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ABSTRACT As a prominent subcategory of cyber-physical systems, mobile cyber-physical systems could
take advantage of widely used mobile devices, such as smartphones, as a convenient and economical platform
that facilitates sophisticated and ubiquitous mobile sensing applications between humans and the surrounding
physical world. This paper presents Vita, a novelmobile cyber-physical system for crowdsensing applications,
which enables mobile users to perform mobile crowdsensing tasks in an efficient manner through mobile
devices. Vita provides a flexible and universal architecture across mobile devices and cloud computing
platforms by integrating the service-oriented architecture with resource optimization mechanism for crowd-
sensing, with extensive supports to application developers and end users. The customized platform of Vita
enables intelligent deployments of tasks between humans in the physical world, and dynamic collaborations
of services between mobile devices and cloud computing platform during run-time of mobile devices with
service failure handling support. Our practical experiments show that Vita performs its tasks efficiently with
a low computation and communication overhead on mobile devices, and eases the development of multiple
mobile crowdsensing applications and services. In addition, we present a mobile crowdsensing application,
Smart City, developed on Vita to demonstrate the functionalities and practical usage of Vita.

INDEX TERMS Mobile cyber-physical system, crowdsensing, system architecture, social network, cloud.

I. INTRODUCTION
In recent years, the capabilities of contemporary mobile
devices such as smartphones have been improving a lot. These
capabilities, such as significant computational resources (pro-
cessing capability, local storage), multiple communication
radios (second/third/fourth generation cellular, WiFi, Blue-
tooth, WiFi Direct, etc.), various sensing modules (cameras,
accelerometer, gravity sensors, etc.), and high level program-
ming languages (Java in Android, Object C in iOS), enable
mobile devices to form mobile cyber-physical systems (CPS)
in our daily lives [1].

Similar to traditional CPS [2], which are integrated com-
puting and communication systems that process and react
to sensing data from the external physical environment, and
transform the way humans interact with the physical world,
mobile CPS could be considered as a prominent subcategory
of CPS with inherent mobility features [3]. Also, different

from conventional embedded sensor systems, in which nodes
are usually stationary due to the high energy-cost of move-
ments [4], mobile CPS could be built on mobile devices
that travel with their owners, and can take measurements in
different phenomena (e.g., transportation status) and react in
the physical word at multiple places throughout the day [5].
Thus, mobile CPS could provide a convenient and economical
platform that facilitates sophisticated and ubiquitous mobile
sensing applications between humans and the surrounding
physical world.
Mobile crowdsensing refers to a broad range of social

and community-based sensing paradigms employing mobile
devices and wireless networks [6]. Different from con-
ventional sensing solutions using specialized networks of
sensors, mobile crowdsensing aims to leverage human intel-
ligence to collect, process, and aggregate sensing data using
individuals’ mobile devices (e.g., using a camera to capture
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a specific target), so as to realize a higher quality and more
efficient sensing solution. Therefore, a connection exists
naturally between mobile crowdsensing and mobile CPS,
where mobile crowdsensing could be an emerging direction
of mobile CPS, and mobile CPS are potentially promising
implementation approaches for mobile crowdsensing.

Currently, most of the existing solutions of mobile CPS for
crowdsensing are application specific and/or run on different
custom-made software and hardware platforms with different
capacities [7]–[9], and they usually follow different service
interaction standards. For instance, consider two different
applications of mobile CPS both developed for the same
transportation scenario and run on different mobile devices,
but one is designed to detect traffic accidents, and the other
is designed to find out the most appropriate route. These two
applications may not be able to share the same type of sens-
ing data and related services directly. This may significantly
constrain the sensing fusion and wide interaction between the
digital world and physical world, as the horizon of individual
people and sensing scope and capacity of various mobile
devices are limited. Moreover, use of complex purpose-built
mobile CPS applications may result in complicated opera-
tions that seriously constrain the user experience of a mobile
CPS, and may not work well in some mobile devices with
low capacities [3]. The work in [10], which utilizes Twitter to
construct a crowdsensing system capable of supporting mul-
tiple crowdsensing applications is a step in the right direction.
However, this system lacks the flexibility to meet the diverse
and ubiquitous service requirements of different participants
engaged in multiple crowdsensing tasks of mobile CPS.

Further, different from conventional mobile embedded
systems, which are focused on the system’s computations,
mobile CPS usually are human-centric and need humans to
participate and operate some specific control tasks (e.g., pro-
cessing sensing data), so as to achieve seamlessly integrated
sensing, computing, and control functions [11], [12]. How-
ever, as the application purposes and specialties of individuals
are various and the capacities of their mobile devices are
heterogeneous, while the current research work about mobile
CPS is mostly focused on the optimization of computing
tasks, such as avoiding over provisioning of the servers to
mobile devices [3], an optimization mechanism that could
simultaneously support efficiently and effectively allocating
the computing tasks and human-based tasks among individ-
uals in a mobile CPS is still lacking. Consequently, there
is a need for a crowdsensing-oriented mobile CPS, which
could support the efficient development, deployment and
management of different customized mobile crowdsensing
applications with standard and universal service interactions.
Also, this system should support effectively allocating and
optimizing the diverse computation tasks and human based
tasks of mobile CPS simultaneously during run-time. To the
best of our knowledge, such a system does not currently exist.
The main objective of this work is to develop and validate an
open and effective mobile CPS for ubiquitous crowdsensing
applications.

In addition, as the availability of an individual’s mobile
device may be unreliable in mobile CPS, such as due to
the crash of mobile operating systems, battery exhaustion,
and intermittent networking disconnection, this may result
in service failures and impede the pervasive use of crowd-
sensing applications [13]. However, most of the existing
solutions [14]–[16] for service failure handling rely on spe-
cific protocols, and could not support different crowdsensing
applications of mobile CPS widely. Therefore, in developing
the crowdsensing-oriented mobile CPS, we also design and
incorporate a novel mechanism that handles possible service
failures, in addition to ensuring a high level of reliability
of mobile crowdsensing applications when allocating and
processing the computational tasks in the mobile CPS.
To address the needs identified above that are not effi-

ciently met by existing solutions of mobile CPS, in this
paper, we propose a novel mobile distributed system – a
crowdsensing-oriented mobile CPS called Vita for mobile
crowdsensing applications. Leveraging the popular social
networking services by integrating our previously proposed
MS2A [17], Vita adopts and orchestrates a series of open
source techniques to provide a systematic approach to
develop a mobile CPS for multiple and diverse mobile crowd-
sensing application scenarios. Our experiments show that Vita
has affordable computation and networking overheads, and is
efficient and effective for practical applications. Our major
contributions are as follows:

• We propose Vita, a mobile CPS for mobile crowdsensing
applications across mobile devices and cloud computing
platforms, and present its design and implementation.
Vita provides a seamless, comprehensive and universal
solution that supports efficient development, deploy-
ment and management of multiple mobile crowdsensing
applications/tasks for both application developers and
end users.

• Vita is the first mobile CPS that simultaneously supports
effectively allocating human resources and computing
resources among individuals, with a novel service failure
handling mechanism that does not depend on specific
protocol on mobile platform.

• We develop novel applications based on Vita for deploy-
ment in Android devices to demonstrate the practical
applications of Vita.

The rest of the paper is organized as follows. Section II
gives some background on mobile CPS for crowdsensing
applications, and discusses the requirements of developing
mobile CPS. Section III presents the overall architecture and
key components of Vita, and discusses how it meets the
requirements of mobile CPS for crowdsensing. Section IV
presents strategies for the implementation of Vita. Section V
demonstrates a concrete application example developed on
Vita to illustrate the functionality of Vita. Section VI shows
practical experiments to evaluate Vita. Section VII reviews
other mobile CPS for crowdsensing and compares them with
Vita. Section VIII concludes this paper.
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II. BACKGROUND
There are many examples of mobile CPS for crowdsensing
applications. In this section we first briefly present the exist-
ing and potential mobile CPS based crowdsensing applica-
tions, and then based on these, we discuss various technical
requirements of mobile CPS, and propose the techniques
and methodologies we incorporate in Vita to address these
requirements.

1) VEHICULAR SOCIAL NETWORKING
A large number of people in urban areas spend hours on
their daily commute to and from work, traveling along the
same routes at about the same time. Their travel patterns are
highly predicable and regular. Consequently, with the help of
mobile CPS, there is an opportunity to form recurring virtual
mobile communication networks and communities between
these travelers or their vehicles, i.e., vehicular social net-
works (VSNs). Through mobile crowdsensing, a VSN could
aggregate travel information to measure the potential traffic
congestion [18], find the most appropriate (e.g., lowest fuel
consumption, shortest time) route in real-time [19], and detect
traffic accidents and providing situational awareness services
to first responders [20].

2) ENVIRONMENTAL MONITORING
The wide deployment of sensing technologies in our daily
living environments and pervasive usage of mobile devices
bring great opportunities for the deployment of mobile CPS
to facilitate crowdsensing of human activities and interac-
tions with the physical world. For example, through mobile
crowdsensing, people can monitor their surrounding work-
ing environments and share the emerging and appropriate
information with their colleagues, so that unsafe conditions
can be discovered and made known to everyone that may be
potentially affected in a timely manner. This can also poten-
tially enhance the social relationship between colleagues and
promote collaborations among them [21]. Also, by equipping
widely deployed mobile devices with appropriate sensing
modules and crowdsensing applications, mobile users could
collectively measure the air quality, detect various pollutions
(e.g., NOX), and share the information with the communities
in an efficient manner [22].

3) DISEASE REPORT AND CRISIS MANAGEMENT
As many mobile devices are equipped with an array of
sensors, through the mobile CPS for crowdsensing, diverse
sensing data and citizen reports from mobile devices can be
triaged and acted on in real-time by individuals/communities,
which will facilitate disease reporting and crisis management
[23], and potentially bring economic benefits of up to $1.4
trillion [24]. For instance, theMinistry of Health in Cambodia
uses GeoChat [25], a crowdsourced sensing interactive map-
ping application, for disease reporting and staff alerts which
enables rapidly escalated responses to potential outbreaks.
Also, Ushahidi [26] has been used to crowdsource and map
crisis information from multiple sensing data streams in
real-time through mobile devices, so as to coordinate field
teams’ activities and provide remote support from outside an
earthquake zone.
The above examples show that mobile CPS based crowd-

sensing applications are of much practical use in daily lives.
However, if we target to develop a mobile CPS to support
these examples, there are several key technical requirements
that need to be addressed. For example, in environmental
monitoring, as the types of mobile sensing applications are
quite heterogeneous, it needs a universal and standard archi-
tecture to support sensing fusion among multiple crowd-
sensing applications; in the applications scenarios of disease
reporting and crisis (e.g., natural disasters) management, a
mechanism that could not only efficiently allocate the com-
puting tasks, but also the human-based tasks among individu-
als is crucial, as human factor usually play important roles
in such time sensitive scenarios. In the VSNs, due to the
highly dynamic network environment, a reliability mecha-
nism is necessary to ensure the stability and correctness of
crowdsensing applications.
As summarized in Table 1, in order to address these

requirements, in developing the overall architecture of Vita,
we adopt the design principles of REpresentational State
Transfer (REST)-ful Web Services [27], which is already
widely used for mobile applications and provides an ideal
service-oriented architecture (SOA) to support the standard
service interactions both for the development stage and at
run-time. We adopt a number of open source techniques to
develop a customized cloud computing platform, which could

TABLE 1. Requirements of mobile CPS.

Requirements Descriptions Solutions
Universal and 
standard archi-
tecture

To standardize and manage the service interac-
tions across mobile devices and augment servers 
that provide scalable computing service to mo-
bile devices

RESTful Web Services architecture design principle, mobile 
SOA framework [17], customized cloud platform imple-
mented by using a number of open source techniques

Resource optimi-
zation mecha-
nism

Supports efficient allocation of human based 
tasks among individuals and computing tasks 
between mobile devices and cloud platform

Leverage advantages of social networking services to design 
a novel application-oriented service collaboration model, and 
collaborate with the customized cloud platform

Reliability en-
hancement 
mechanism

To detect and recover possible unavailability of 
individual mobile devices when they are per-
forming collaborative tasks with the cloud com-
puting platform

Using mathematics modeling tool-Pertri Net and based on 
BPEL to design a high level service state synchronization
mechanism in mobile platform
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provide augmented services and collaborate with the mobile
SOA framework [17] we developed before to support effi-
cient development, deployment and management of different
mobile crowdsensing applications. Also, we incorporate the
social networking service MS2A implemented in our former
work [17], and design a novel application-oriented service
collaboration model (ASCM), which can quantify and ana-
lyze information on social contexts and sensing data (i.e.,
the social relationships between human and/or the physical
elements surround them), so as to optimize the resource
allocation in mobile CPS. In addition, based on Business
Process Execution Language (BPEL) [28], we adopt math-
ematic modeling tool - Petri Net [29] to design a high level
service state synchronization mechanism (S3M), which could
be independent of specific protocols, to address the possible
unavailable situations of mobile devices in mobile CPS.

III. SYSTEM DESIGN
As shown in Figure 1, the overall architecture of the Vita
system consists mainly of two parts: the mobile platform
and cloud platform. The mobile platform provides the ini-
tial environment and ubiquitous services to enable users
to participate in and operate crowdsensing tasks through
their mobile devices. The cloud platform provides a central
coordinating platform to store and integrate the diverse data
and tasks from crowdsensing and social networking service
providers, as well as the development environment to support
the development of mobile crowdsensing applications. In this
section, we present the key components of Vita, and discuss
how they meet the requirements of mobile crowdsensing as
stated above.

A. MOBILE SOA FRAMEWORK
The mobile SOA framework (along with the mobile SOA
server shown in Figure 1) has been proposed and imple-
mented in our former work [17]. It is an extensible and con-
figurable framework that is based on the specifications and
methodologies of RESTful Web Services. It integrates popu-
lar social networking services (i.e., Facebook and Google+)
and adopts an SOA to support the development of multiple
mobile web service-based applications and services in an
efficient and flexible way, with standard service interaction
specifications that enable dynamic service composition dur-
ing mobile devices’ run-time. Further, in Vita, this mobile
SOA framework also works as a bridge between the mobile
platform and cloud platform of Vita over the Internet.

B. VITA CLOUD PLATFORM
For the design of the cloud platform of Vita, we adopt the
RESTful Web Service-based architecture design methodolo-
gies and specifications, so as to provide an open, extensi-
ble and seamless architecture across the mobile and cloud
platform of Vita. The cloud platform of Vita mainly consists
of four components: management interface, storage service,
deployment environment, and process runtime environment.

1) MANAGEMENT INTERFACE
It provides the development environment and application pro-
gramming interfaces (APIs) to support application developers
and enable third party service providers to participate in
the development of different applications and services for
mobile crowdsensing. Also, it makes use of open APIs pro-
vided by commercial social network websites like Facebook
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FIGURE 1. Overall architecture of the Vita system.
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to access social networking services and disseminate crowd
based social information to some popular social networks.

2) STORAGE SERVICE
It supports automatic backup of Vita system data, such as data
related to software services, installation files of Vita in the
mobile devices, task lists and results of mobile crowdsensing,
and sensing data uploaded by the mobile devices through
Vita.

3) DEPLOYMENT ENVIRONMENT
It enables dynamic deployments of the mobile platform and
various web services of Vita to different mobile devices
according to their capacities and practical application require-
ments, so as to support their users’ participation in differ-
ent mobile crowdsensing applications. Also, it could auto-
matically deploy new applications and services uploaded by
developers to the process runtime environment for executing
diverse mobile crowdsensing applications.

4) PROCESS RUNTIME ENVIRONMENT
It is based on open source techniques (more details will
be provided in Section 4), and provides the crowdsensing
platform, which could coordinate, process, and combine mul-
tiple crowdsensing results from different mobile devices in
real-time.

During a mobile device’s run-time, once Vita receives a
web service request from the Mobile Client, it can auto-
matically analyze the requested Uniform Resource Locator
(URL) and the related parameters encapsulated by Hypertext
Transfer Protocol (HTTP), so as to determine the specific
Java class to invoke the corresponding web services based
on the configuration files. After the operation of the related
web services, Vita will return the results to theMobile Client
in the form of REST-style data through HTTP. Thus, com-
pared to traditional SOA-based solutions for developing and
deploying mobile applications, one advantage of this archi-
tecture design is that the application developers do not need
to be concerned with mapping relations about specific service
requests to corresponding service resources, but can focus on
the development of the application itself. For example, the

Development Environment DE-Provision Deployment Environment

request(DEconfig)

deploymentResult

deploy(package,config)

Pocess-RuntimeEnvironment

deploy(BPEL,WSDL)

[mobileService?]

StorageService

persist(package,data)

deploymentResult

deploymentResult

developmentEnvironment

FIGURE 2. Process flow of application development in Vita.

work flow of application development in Vita consists of five
steps, as shown in Figure 2 as elaborated as follows.
(i) Once the Deployment Environment Provision model

on the cloud platform receives the development environment
request with configuration, it can automatically deploy all
of the components of the software needed to construct the
development environment according to the assessment of the
developer’s software and hardware configurations, so as to set
up the development environment for the application developer
who intends to develop new services based on theVita system.
(ii) Based on the service-oriented programming model of

the mobile SOA framework, the developers can easily and
efficiently implement diverse mobile crowdsensing applica-
tions. After a developer has finished the development, s/he
can submit the deployment request with the related soft-
ware package and configuration file. Further, the Deployment
Environment analyzes whether the software package can be
deployed to the cloud platform and/or to a mobile device.
(iii) If the software package needs to be deployed on the

cloud platform, the Deployment Environment will deploy it to
the Process Runtime Environment according to the specifica-
tion of BPEL and the service description of the Web Service
Definition Language (WSDL). After the Process-Runtime
Environment receives and finishes the related deployment
request, it will return the deployment result to theDeployment
Environment.
(iv) If the software package needs to be deployed onmobile

devices later, the Deployment Environment will deploy the
related software components and data by submitting the
request message consisting of (package, data) to the Storage
Service module. Then the Storage Service module will store
them in the cloud infrastructure and return the related deploy-
ment result.
(v) Finally, the Deployment Environment will return the

deployment result to Development Environment, and present
the results to the developer.

C. APPLICATION-ORIENTED SERVICE COLLABORATION
MODEL
In this section, we introduce a novel resource optimization
mechanism called application-oriented service collaboration
model (ASCM) for allocating human-based tasks among indi-
viduals, and computing tasks between mobile devices and
cloud computing platform efficiently and effectively.
As shown in Figure 1, the ASCM mainly consists of three

components: Task Client, Transformer, and social vector. The
Transformer can transfer the diverse application requests and
tasks (which are task instance data based on the specifications
of WS-HumanTask [30]) from users to a standard data format
as a web service [31], [32] during a mobile device’s run-
time; implementation details about it will be introduced in
Section IV-B. The Task Client works as a bridge between
the ASCM and the mobile SOA framework; it could receive
the application requests of users and invoke the existing
services in the mobile SOA framework to accomplish the
tasks. Also, the Task Client can invoke the social networking
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services incorporated in the mobile SOA framework to obtain
social information. The social vector can obtain application
tasks information from the Transformer, and service and
social information from the mobile SOA framework through
the Task Client. Based on these, the social vector quantifies
the distance and relationship between two physical elements
(i.e., people, mobile devices, server of the cloud platform)
and virtual elements (i.e., software service, computing/human
based task) to facilitate the deployment of computing tasks
and human based tasks among different devices and users
of mobile CPS according to different specific application
scenarios of crowdsensing.

1) SOCIAL VECTOR
Different from the former work [3], [33]–[35] about mobile
CPS which mainly focus on the optimization of the system
itself, in the design of the ASCM, based on the human-
centric principle, we adopt a top-down design methodology.
We suppose that in a mobile CPS, since every element has
some inherent relations with a user, such as a task is finished
by some people using their mobile devices, and a mobile
device (contains the services available on it) belongs to a
user, thus the allocation of the tasks (both computing and
human-based) could be based on the relation between them
and the users. The social vector is a tool in ASCM which
is applied to optimize the allocation of a task to a group of
physical elements (e.g., people, cloud servers). It is comprised
of various attributes about the information of a user and the
computing resource available to her (e.g., her mobile device,
and cloud server connected to her mobile device). Social
attributes can be continuous, discrete or Boolean. Continuous
social attributes include computation power (e.g., the number
of floating-point operations that the device can perform per
second), communication capacity (e.g., bandwidth available
for communicatingwith other devices), and remaining battery
time, which are obtained via a general API in the device.
Discrete social attributes include the number of similar tasks
executed, the number of remaining tasks, and the number
of reused resources for a particular task, which are updated
and recorded in each mobile device individually whenever a
task is completed. Boolean social attributes include whether a
mobile user has related knowledge or prefers to do a particular
task, which are input by users after the deployment of a Vita
crowdsensing application on mobile devices. In essence, an

m-dimensional social vector
⇀

VT ,U = [aT ,U1aT ,U2 . . ., aT ,Um ]
which has m attributes could be used to quantify the rela-
tionships between a humanbased or computing task T and
a mobile user U , which assists Vita in assigning multiple
and heterogeneous tasks to mobile users in an effective and
efficient manner.

Here we use an example to illustrate how a social vector
works in ASCM of Vita to optimize the allocation of human
based tasks. Similar methodologies could also be applied for
the optimization of computing tasks. Suppose that there areM
mobile users, which areU1,U2, . . . ,UM , and N multiple and

heterogeneous tasks, which are T1,T2, . . . ,TN . A straightfor-
ward but ineffective way is to assign the tasks to the mobile
users randomly. A better approach is to assign each task to a
group ofmobile users with themost appropriate resources and
knowledge to carry out the tasks (i.e., based on their attributes
as defined in the social vectors). Assume that a mobile user S
has the most appropriate resources and knowledge to execute
the task Ti. We can define an ideal social vector

⇀
VTi,S = [

⇀
VTi,S (1) ,

⇀
VTi,S (2) , . . . ,

⇀
VTi,s (m)]

Besides, assume that there is a group G formed by a group

of user Uj, where j = 1, 2, . . . ,Li and
N∑
i=0

Li = M . The group

social vector between the groupG and the task Ti is defined by

⇀
VTi,G=

1
Li

 Li∑
j=1

⇀
VTi,Uj (1),

Li∑
j=1

⇀
VTi,Uj (2) , . . . ,

Li∑
j=1

⇀
VTi,Uj (m)


where

Li∑
j=1

⇀
VTi,Uj (x) = ax . Note that for each group, the group

social vector gives the centroid of the group. A user of Vita
seeks to find a group of Li mobile usersU1,U2, . . . ,ULi such

that the
⇀

VTi,G is the closest to the ideal social vector VTi,S .
Referring to Figure 3, for purposes of illustration, we define
a simple social vector with two attributes a1 and a2 . Given ten
social vectors (i.e., ten mobile users), we select a group with

the group social vector
⇀

VTA,G, which is closest to the ideal

social vector
⇀

VTA,S . Based on these, we adopt two intelligent
computing techniques: Genetic Algorithm (GA) [36] and
K-means [37] clustering as optimization methods in social
vector. Note that GA provides more optimized solutions but
requires more processing, while K-means clustering provides
less optimized solutions using less processing.

FIGURE 3. Social vectors for task TA.

For purpose of illustration, here we present a GA-
based clustering algorithm for assigning people to different
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tasks. Inspired by the evolution of living organisms, GAs
are intelligent computing techniques for finding optimized
solutions. Basically, practical solutions are expressed as
‘‘chromosomes’’, which can be mixed to generate new chro-
mosomes through a crossover process. Sometimes, amutation
process can also be employed to introduce small changes in
chromosomes after a crossover operation. After many genera-
tions of crossover andmutation operations, a close-to-optimal
solution is obtained. As an example, assume there are ten
people. Each of them has an identity number {0, 1, . . . , 9}.
Initially, random solutions are generated to assign the peo-
ple into groups. Groups can be combined to form a chro-
mosome. Chromosomes are selected based on their fitness
values. The fitness value is defined as the distance between
the group social vector and the ideal social vector. Then, α
chromosomes are selected through a random process based
on their fitness value. For assigning people to different groups
effectively, chromosomes with a higher fitness have a higher
probability of being selected (higher fitness value implies
smaller distance between the group social vector and the ideal
social vector). Note that a chromosome may be selected more
than once. After selecting α/2 pairs of chromosomes, each
of them is mixed in the crossover process. Assume that two
parent chromosomes, A and B have been selected. After that,
β% of A is mixed with (1- β%) of B to produce C and
(1- β%) of B is mixed with β% of B to produce D. Some
identity numbers may need to be added or removed to ensure
the identity numbers of all people are in the chromosomes and
without duplication. The best two chromosomes among A, B,
C andD survive. Finally, any identity numbermay be replaced
by another with a pre-definedmutation probability. The above
steps are repeated 1000 times (i.e., 1000 generations).

Besides, considering the computationally extensive nature
of GA-based algorithm, we also adopt a K-means-clustering-
based algorithm in social vector. It randomly assigns people
into groups so that each group has roughly the same number
of people. For each person, it can calculate the distance
between his/her social vector and the centroid of the social
vector of his/her group. For maintaining the desired number
of people in each group, a person who is closest in his/her
group is assigned to the second closest group if the number
of people in the original group exceeds the predefined limit.
The above process is repeated until no people need to be
re-assigned from one group to another. In other words, the
process ends when all groups become stable. Since the choice
of initial people in group can greatly affect the final result
(i.e., the smallest sum of distance between group social
vectors and ideal social vectors), the best result of multiple
trials of different initial people in groups will be adopted.

2) WORKING THEORY OF ASCM IN VITA FOR MOBILE
CROWDSENSING APPLICATIONS
Here we use two examples to illustrate the overall working
theory of ASCM with other components of Vita for mobile
crowdsensing applications. Assume that there are two roles:
A – common mobile users; B – mobile users who participate

in crowdsensing and provide human-based service. The same
usermay havemultiple roles, such asA andB simultaneously,
but since the definitions of different roles are distinct and
different processes are provided in order to support these
roles, thus we present them separately.

UserInterface TaskClient ASCM

userRequest(desp)

CloudREMobileSOA

[serviceExist?]

[collaborate?]
request(param)

result

colloborate(requirement)

result

request(param)

result-M

request(param)

result-C

createTask(desp) createHT(Task)

result
createMHT(Task)

resultresult
result

FIGURE 4. Process flow of common users of Vita.

a) Common mobile users: As shown in Figure 4, a common
mobile user of the Vita system can choose functions through
the user interface of his mobile device, according to his
application purpose. After the Task Client in ASCM of Vita
receives the related application request and description, it
first assesses whether this application request can be satisfied
through the existing services and/or a collaboration of them
on the local mobile device and the cloud platform of Vita. If
the assessment is positive, then the Task Client will assess
whether this request needs service collaboration, and if it
finds that the existing services in the local mobile device can
directly meet this request, it will then send the request to the
Mobile SOA framework and get the related result. If the exist-
ing services cannot satisfy the request, the Task Client will
send the collaboration request to the social vector in ASCM.
Then the social vector analyzes and decides the method of
service collaboration based on the attributes of this request
(note that all required information of using social vectors can
be obtained via a general API in mobile devices, recorded in
each mobile device individually whenever a task is completed
or inputted by users after deploying a crowdsensing applica-
tion of Vita on mobile devices), and then sends the service
invocation request to the cloud platform of Vita through the
Mobile SOA framework, so as to get the service collaboration
results from the other mobile devices (result-M) via the
cloud platform and/or the cloud platform itself (result-C).
Furthermore, the Mobile SOA framework will combine both
of the results (result-M and result-C) and return the result to
the Task Client.
If the Task Client finds that the original application request

could not be dealt with at the beginning, it will encapsulate
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the request as a new human based service by the Transformer
of ASCM, create the related task request, and try to get the
result through real-time crowdsensing, more details about
this process will be introduced in B below. Finally, the Task
Clientwill combine all of the results from the various process
branches and return the final results to the user through the
user interface of her mobile device.
b) Mobile users participating in crowdsensing and
providing human-based services: In Role A, it is possible
that during the mobile users’ runtime, the current available
services and collaboration results both in their mobile devices
and on the cloud platform are unable to meet the purposes
of their applications. In this case, Vita can automatically
transfer the related service requirements of the users to
standard human-based web services, and then deploy the
services to the cloud platform through the mobile SOA
framework according to the service requirements. After that,
other mobile users can participate in crowdsensing and help
to finish such a task.

UserInterface MobileClient MobileSOA

input(spec)

CloudRE

getTask(desp)

ASCM

taskDisplay

listTask(spec)

taskList

getTask(desp)

taskRef-M

taskRef-C

submit(humanWork)
submit(result)

callBack(result)

evalResult

callBack(result)

evalResult
workComment

display(comment)

FIGURE 5. Process flow of human provided services.

As shown in Figure 5, mobile users who plan to participate
in and help to finish some application tasks of crowdsensing
can first submit their specialties and purposes to the Mobile
Client through the user interface of Vita. Then, through the
Mobile SOA framework, the expected description of the tasks
will be sent to the ASCM and the cloud platform of Vita,
and the cloud platform of Vita will push the information to
other mobile users of Vita. As discussed above, with the help
of social vector in ASCM, the Mobile SOA framework of
Vita in the devices of other mobile users can automatically
match the existing tasks and the expected tasks (according
to their requirements and descriptions), and then return the
results to the cloud platform. After that, the cloud platform
of Vita will combine all the suitable tasks as a task list,
and then return to the mobile devices of users who plan
to participate in crowdsensing. Based on the task list and
the related description of the tasks in the user interface of
their mobile devices the users can select the crowdsensing

tasks they prefer to participate in. After finishing the tasks,
they can input their work through the user interface. The
Mobile Client in their mobile devices will then submit the
work to the Transformer of ASCM, transfer the work to
standard web services, and finish the integration of the mobile
crowdsensing tasks in the cloud platform of Vita. Finally,
the Mobile Client will return the results of crowdsensing
tasks with assessment comments from users (who posted
the crowdsensing task before) via the cloud platform to the
participants.

D. SERVICE STATE SYNCHRONIZATION MECHANISM
As mentioned in Section II, based on BPEL, we adopt the
Pertri Net to design S3M, so as to handle the possible ser-
vice failures of Vita, ensure the consistency of its services,
and the correctness of the crowdsensing results. S3M is an
optional component of Vita. Application developers could
choose whether or not to integrate it in Vita according to
their practical requirements (i.e., the overhead and reliability
concern of the applications they are developing). S3M con-
sists of two parts: to analyze the possible process failures of
applications developed on Vita, and to automatically recover
the corresponding failures to normal statuses. The design of
S3M is based on the assumption that the Infrastructure as
a Service (IaaS) provided by the cloud platform of Vita is
always available.

1) ANALYZING THE FAILURES OF SERVICE STATE
SYNCHRONIZATION ON THE VITA SYSTEM
Normally, in mobile environments, there are two reasons
for the occurrence of service state synchronization failures:
(i) Networking disconnection, such as the brief interruption
caused by the automatic switching of networking access from
cellular to WiFi, and/or a poor wireless signal, resulting in
unstable networking connection; (ii). System crash in mobile
devices, such as one that can occur when the batteries run
out when the device is in use, or a collapse in the mobile
operating system caused by instability of the mobile platform.
Based on these conditions, in S3M, we design a model to ana-
lyze the possible failures in the service state synchronization
of Vita.
In themodel shown in Figure 6, hollow rectangles (the tran-

sition) indicate the regular state of service synchronization.
A successful service state synchronization cycle of Vita
around its mobile and cloud platform consists of the
following steps:

(i) T0: the state synchronization initiator sends the related
request to the communication channel.

(ii) T2: the request has been sent to the channel of the
responder through a wireless network.

(iii) T3: the responder has received the request from its
channel.

(iv) T13: the responder processes this request.
(v) T4: the responder sends the related request to the com-

munication channel.
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(vi) T5: the results are returned to the initiator through a
wireless network.

(vii) T1: the initiator has received the results.
Further, the solid rectangles (the transitions) in Figure 6
indicate all of the possible failures in service synchronization.
Transitions NetInter1 and NetInter2 indicate that due to the
switch in networking access, an interruption of the network
occurs when the message requesting state synchronization is
being sent; and Transition ServerCrash1 indicates that the
server has crashed in the responder before it receives the
synchronization request from other mobile devices (it should
be noted that, here the server refers to the mobile SOA server
of Vita in the mobile devices, not the servers in the Vita cloud
platform). We define the three types of state synchronization
failures mentioned above as Service Unavailable Failures,
which means that the requestor will consider that the ser-
vice of state synchronization is unavailable. In addition, in
Figure 6, a token action is put in SU_NI or SU_SC, meaning
that the Service Unavailable Failure has occurred.

P0

P5
T0

P1

T1P13

P2

P3

NetInter1

T2
P4

SU_NI NetInter2

T3

P7

v

P6

P8

ServerCrash1
SU_SC

ServerCrash2

RESP1T13

P17
ServerCrash3

P12

v

P10 T4

ServerCrash4

REQ

T5P11

FIGURE 6. Analysis of service state failures on mobile platforms.

In addition, if Transition ServerCrash2 or ServerCrash3
occur, this indicates Vita’s mobile SOA server has crashed
while the response side (i.e., the cloud platform, and/or other
mobile devices) is processing the message. This may result
in the disconnection of the transportation layer and the loss
of the response message. This type of failures is considered
as Pending Response Failures. Similarly, a Pending Response
Failure may also result when Transition NetInter3 or Net-
Inter4 occurs, which refers to a network disconnection that
happens when the request is being sent. Correspondingly,
when a Transition ServerCrash4 occurs we consider this to
be a Pending Request Failure, which means that the requestor
of the service synchronization crashed after it sent the request
message.

2) PROCESS RECONFIGURATION-BASED SOLUTIONS
FOR SERVICE STATE SYNCHRONIZATION
As the probabilities of Pending Request Failures and Pending
Response Failures occurring are relatively low, and there
are already well-established studies addressing these issues
such as [38], thus in this paper we focus on the reconfigura-
tion of Service Unavailable Failures. Considering the hard-
ware and software constraints of mobile devices, we adopt a

lightweight processing strategy. Based on the BPEL, we place
invoke activity under scope activity (both are activities of
BPEL), and insert the fault handler inside the invoke activity
as a wait activity (which adds a delay) and an invoke activity
to achieve the retry semantic. One constraint of this solution is
that it can only send the request twice when the parter service
is not available, while we can insert the scope activity with
fault handler to the former fault handler multiple times so as
to improve the allowances of the request times. The model
of the process of reconfiguration is shown in Figure 7. If the
Transition ReSend executes the resending of the request, and
the server has been restarted (the Transition Restart happens),
then this request will be accepted and the reconfiguration of
the service state synchronization can be achieved.

P0

P5
T0

P1

P3

NetInter1

T2
P4

SU_NI NetInter2

T3

P7

v

P6

P8

ServerCrash1
SU_SC

ReSend Restart

FIGURE 7. Solution for a service unavailable failure.

Moreover, just likeWeb Services BPEL (WS-BPEL) offers
correlation sets to support transportation layer indepen-
dent stateful protocols, as S3M works in a transport layer-
independent way by transforming WS-BPEL specifications,
thus different from the former solutions for service state
synchronization [14]–[16], S3M is the first solution onmobile
platform that could work independently of specific transport
protocols.

IV. IMPLEMENTATION STRATEGIES
In this section, we discuss and present how the main compo-
nents of the Vita system can be implemented in practice.More
technical details about the key components of Vita, as well as
a prototype and source codes can be found in the website of
our project [39].

A. IMPLEMENTATION OF THE CLOUD PLATFORM OF
VITA
In the current version of Vita, we adopt the Amazon Web
Service (AWS) infrastructure services (i.e., EC2 and S3) and
a series of open source techniques, such as JBoss jBPM
[40], Apache ODE [41], Apache Tomcat, BPEL4People and
WS-HumanTask [30] for the implementation of Vita’s cloud
platform. Other IaaS cloud computing platforms that are not
AWS based could also be used to implement the Vita cloud
platform. It consists of four parts: management interface, pro-
cess runtime environment, storage service, and deployment
environment.

1) MANAGEMENT INTERFACE
The management interface is implemented by integrating
the Apache ODE management interface, the JBoss jBPM
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management interface, and the development environment
provision interface. For instance, as shown in Figure 8, the
implementation of the development environment provision
provides the ability to download sources and/or compiled
releases of the software packages that are required for setting
up the development environment, and related documentation
and examples.

Management Interface
Development Environment Provision BPEL UI

(Apache
ODE)

WS-HumanTask
Management

Interface (JBoss )
Software
Packages Documents Download

Examples

FIGURE 8. Implementation of the management interface.

Process Runtime Environment

Process Definitions

BPEL
Processes

BPEL4People
Processes

jBPMApache ODE

Tomcat Server JBoss AS

Process
Adapter

WS-
HumanTask

R
E

S
T-S

O
A

P
A

dapter

FIGURE 9. Implementation of the process runtime environment.

2) PROCESS RUNTIME ENVIRONMENT
As shown in Figure 9, the process run-time environment is
implemented using two application servers: (a) the Apache
Tomcat server for the setting up of the BPEL running
environment - Apache ODE; and (b) JBoss AS (Appli-
cation Server), on which the jBPM process manager is
deployed. Based on these two open source business process
runtime environments, BPEL processes and their extension
BPEL4People processes can be deployed. Also, we use the
process adapter to transform the corresponding BPEL4People
part into the BPMN implementation of business processes,
which can be integrated with WS-HumanTask. Moreover,
as in the mobile environment of Vita, its services are
REST-based, while BPEL only supports Simple Object
Access Protocol (SOAP) based web services. Thus, the
BPEL4People processes are not supported by Apache ODE.
To address this issue, we use a REST-SOAP Adapter. This
adapter can receive the SOAP service invocation request,
and transform this request into the REST service invocation
request.

3) STORAGE SERVICE
Based on the AWS S3 infrastructure, the storage service
wraps the APIs for all of the data storage requirements
from other modules: the data for the WS-HumanTask, the
related software packages, examples of documents for the
development provisioning, and the mobile SOA environment
provisioning.

4) DEPLOYMENT ENVIRONMENT
The deployment environment is composed of three mod-
ules. We integrate the Apache ODE deployment environ-
ment and the JBoss jBPM deployment environment to form
a base for the Management Interface to support BPEL and
the BPEL4People development environment. Based on the
storage service module, we implemented the mobile SOA
environment provision module.

B. IMPLEMENTATION OF THE ASCM
The current implementation of ASCM in Vita is based on
the Android operating system and open source techniques.
As indicated in Section III-C, beyond the social vector
and Task Client, which could be developed on Android
directly, the major implementation task of ASCM is the
Transformer. In order to implement the Transformer, we
adopt the open source techniques BPEL4People and WS-
HumanTask [30]. Based on WS-HumanTask, we develop
a sub-model inside the Transformer, which could describe
and transfer the heterogeneous humantask data to standard
data format. Then through the HumanTask Activity that is
developed based on the BPEL4People, the processed data
can be encapsulated to standard web service and deployed
to the mobile SOA framework as a human-based service. In
addition, if a similar humantask has been deployed and fin-
ished in the cloud platform of Vita, the result can be accessed
by the Human-based Services through the mobile SOA
framework.

C. IMPLEMENTATION OF THE S3M
As mentioned in Section III-D, S3M is implemented using
BPEL, and thus in order to make S3M workable on mobile
devices like Android, a BPEL engine needs to be developed
for mobile platforms.Considering the capacity constraints of
Android devices, we developed a lightweight mobile BPEL
engine on the mobile part of Vita, which architecture is shown
in Figure 10.

Mobile BPEL Engine

BPEL, BPEL4People Processes

Adapter

Executor

Integrator

FIGURE 10. Implementation of mobile BPEL.

In the current version of Vita, the following activities are
supported by the Mobile BPEL engine:
Basic activities
<receive>, receives an incoming message
<reply>, replies with the response message
<invoke>, invokes the REST-based web services
<assign>, assignment to update the values of process vari-

ables.
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Structured activities
<if>, conditional branches of processes
<pick>, multiple execution branches based on incoming

messages.
<sequence>, the sequential execution of sub-activities
<scope>, defines a nested activity with its own associated

elements.
The communications between the cloud platform of Vita

and its mobile platform employ the standard web service
format based on the HTTP protocol and Extensible Markup
Language (XML) data format. In addition, although BPEL
interactions on the Vita cloud side are SOAP based, and
its services in the mobile platform are RESTful Web Ser-
vices based, the SOAP-REST transformation can be achieved
using additional adapters in between, similar to the method
described above forthe cloud platform.

V. APPLICATION EXAMPLE
In this section, we present a concrete application call Smart
City developed on Vita, so as to demonstrate the functional-
ities of Vita and the applications of mobile CPS for crowd-
sensing in our daily lives. Smart City consists of two generic
functions: services, crowdsensing; and two application spe-
cific functions: eating and shopping tour; the screen shots of
some of these functions are shown in Figure 11.

1) GENERIC FUNCTIONS
Services: This function is based on the mobile SOA frame-
work of Vita and takes advantages of the RESTful Web
Service architecture. Application developers could flexi-
bly extend new functions here according to their practical

requirements for different mobile CPS based crowdsens-
ing applications. Furthermore, based on ASCM, develop-
ers could design and develop application specific service
sharing strategies here, which enable the users to easily
share functions in mobile devices’ run-time during some
specific crowdsensing scenarios via the cloud platform of
Vita.
Crowdsensing: This function is mainly based on the

ASCM, social network services of the mobile SOA frame-
work, and the cloud platform of Vita. As demonstrated in
the center screen shot in Figure 11, through this function,
mobile users could post crowdsensing requests through social
networks and find out the potential people who could help
to accomplish the tasks (with the help of social vector in
ASCM), and/or accept new crowdsensing tasks by choosing
the preferable task on the list.

2) APPLICATION SPECIFIC FUNCTIONS
Eating: Beyond the key components of Vita mentioned
above, this function is also based on the location and map
services provided by Google Map. As the screen shot in the
left corner of Figure 11 shows, the eating function consists
of four sub-functions: i-Ask, Search, Comment, and Photo,
it is designed to enable people who travel in a new city to
conveniently find out and/or share food information that they
are interested in real-time.
Here, we set up an experimental application scenario, so as

to demonstrate this function. In this case, it consists of five
persons each carrying an Android phone and has installed
the Smart City. Assume that one of the persons is a visitor
in Hong Kong called Blair who has traveled from Vancouver,

Vita-cloud 
Platform

FIGURE 11. Smart city - mobile CPS based crowdsensing application.
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and she wants to taste some local food in Hong Kong which
Vancouver does not have; and three of the other persons are
in restaurants. As shown in Figure 11, she posts the related
crowdsensing request through the eating function of the Smart
City application on her phone, as follows: What food can be
found here that is not available in Vancouver? After that,
based on the location service, and with the help of ASCM
and cloud platform of Vita, it could automatically push the
request to the three persons who are dining in restaurants and
have experience about this (i.e., two of them had lived in Van-
couver before). Then, through the user interface of the Smart
City, they take a photograph of the food and attach simple
comments. The photograph and comments are automatically
combined with the location service and map service, and
then the answers are uploaded to the cloud platform of Vita.
After the cloud platform of Vita gets all of the answers, it
can automatically match the other answers stored in it before
through the specific information. The overall answers are
then returned to Blair’s phone (shown in the left corner of
Figure 11 which consists of three appropriate answers). We
found that the time taken by Vita to return the answers after
she made the request was about 2-3 minutes.

Finally, with the help of mobile crowdsensing through
Smart City, Blair enjoys local flavors in Hong Kong that are
new to her. She wants to share her experience with others,
to help the next new visitors. To do this, using her phone
she inputs the information similar to those obtained through
mobile crowdsensing before. Such information (comments,
photograph with address, etc.) can then be directly shared
with other visitors with the same request, or stored on the
cloud platform of Vita as a new service. Moreover, the cloud
platform of Vita could record and count the statistics that
which people have been made contributions to crowdsensing,
and grants their prior services when they post requests in the
future. This gives incentives to entice more people to join
crowdsensing via the Smart City.

Shopping tour: Similar to the eating function, this func-
tion is designed to assist users in a city to easily find out
and/or share the shopping information they are interested in
real-time. As shown in the screen shot in the right corner
of Figure 11, different from the above eating example that
mainly demonstrates the collection of human intelligence in
the mobile CPS – Vita to accomplish application purposes
for people, this example demonstrates that Vita can leverage
the advantages of Internet services (i.e., today’s shopping
information) and cloud computing platform to enable people
to aggregate and realize the shopping information that they
are interested in through mobile devices in a convenient and
efficient manner.

VI. EVALUATIONS
In this section, we evaluate Vita in three aspects: development
support, overall system and tasks performance, and the per-
formance of ASCM. In addition, we present practical cases to
demonstrate the reliability of the pro-posed S3M.

TABLE 2. Developed crowdsensing applications.

Campus tours Real-time campus 
events

Example Find the WinMos lab 
at UBC

Find today’s presentations 
on mobile apps and net-
works at PolyU

Consists of web 
services (for no. 
refer to lines of 
code)

- Photo Tag. Ser. (50)
- Location Ser.(30)
- Map Ser.(36)

- Location Ser.(30)
- Map Ser.(36)
-Classify & List Ser.(93)

Lines of code 275 326
Total: 535

A. DEVELOPMENT SUPPORT
In this part we present the design and development of two
prototype applications in the campus context, so as to demon-
strate the advantages and usefulness of Vita for developing
mobile CPS based crowdsensing applications. The applica-
tions are developed using standard Java for Android accord-
ing to the specifications of the REST Web Service and the
BPEL XML schema of Vita. Both of these applications are
implemented through the composition of several REST Web
Services and related clients, part of the source code of which
could be found in our website [39].
As shown in Table 2, the standalone lines of code (LOC) for

the implementation of the applications are 275 and 326. Aside
from the codes to implement the web services, other codes
are mainly XML-based (for real-time service composition in
mobile devices). Even though the LOC looks longer than that
of the web services taken together, this is not indicative of
the development effort, which is much smaller than the latter.
Also, because the applications are developed in Vita, which is
based on the standard specifications of RESTful web service,
the services can readily be reused and composited; e.g., the
location and map services are reused in both application
examples. Thus, the total LOCs needed to implement these
two applications together are less than the sum of LOCs to
implement them individually. Furthermore, this means that
if more applications are developed in Vita, more savings in
development efforts will be realized through the benefits of
service reuse and composition.

1) CAMPUS TOUR
This application is used to help new students find a place
on campus through mobile crowdsensing. Suppose a new
student wants to find the WinMos lab at UBC. After she
posted the crowdsensing request through his Android phone,
someone went past the ICICS building and knew that the
lab is in this building. That person took a photograph of
this building and put information on its location (It is in the
back of the ICICS building, Rm. X327) through the photo
tagging service. This application then automatically trans-
ferred the information as a New Service and combined it
with its existing Map Service and Location Service, and
sent the result, as shown in Figure 12, to the requestor’s
phone.
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Request

Input Answer
with Photo

Photo Tagging
Service

Location
Service

New Service

Map Service

Result

FIGURE 12. Campus tour example and result.

2) REAL-TIME CAMPUS EVENTS
This application can help people on campus find out about
real-time events of interest. In this example, a person on
campus wants to know whether or not there are some aca-
demic presentations in PolyU about mobile applications and
networks, then with the similar working process as mentioned
above, he can obtain answers as shown in Figure 13.

B. SYSTEM AND TASKS PERFORMANCE
Weevaluate the system and task performances of Vita in terms
of three parameters: time efficiency, energy consumption, and
networking overhead in mobile devices, when they finish
crowdsensing and concurrent computation tasks, as these
parameters have great impacts on the experience of mobile
users when they are participating in mobile crowdsensing.
The experimental environment is: Hardware: Amazon EC2
M1 Medium Instance; 3.75 GiB memory; 2 EC2 Compute
Unit (1 virtual core with 2 EC2 Compute Unit); 410 GB
instance storage; 32-bit or 64-bit platform; I/O Performance:
Moderate; EBS-Optimized Available: No.
Software: operating system: Ubuntu 12.04.1; Servers:

ApacheTomcat 7.0.33 and JBoss AS 7.1.1; BPEL engine
BPEL4People environment: ODE1.3.5 and jBPM 5.4.

Posting
Crowdsensing

Request

Input Answers (i.e.,
Topic, Address)

ASCM of Vita Location
Service

Map Service

New Service

Classify & List
Service

Result

FIGURE 13. Example and result of a real-time campus event.

Mobile Devices: A variety of mobile devices are
employed, which are described below for each set of
experiments.

1) TIME DELAY, BASIC BATTERY CONSUMPTION, AND
NETWORKING OVERHEAD OF THE SYSTEM
We tested the basic performance of the Vita system in
two places simultaneously: Vancouver and Hong Kong.
The experimental mobile devices are Google Nexus 10
(Android 4.2.1 version, battery capacity 9000mAh). We ran
10 tests over 3 days, then calculated the average value of
the test results. Each experiment lasted 45 minutes. Each
Nexus 10 sent crowdsensing requests to the servers on the
cloud platform of Vita according to a Poisson distribution
with an arrival rate of E = 5 requests/minute, and the screens
of the devices were shut off during the runtime. The time
delay refers to the periods between the time that the Nexus
10 initiates a crowdsensing (with no data process) request to
the cloud platform and the time that it receives the responses
from the servers on the cloud platform of Vita. In addition,
we classify the results of the experiment into two sets of data:
common (without the S3M) and with S3M, so as to determine
the additional overhead when loading the S3M, as this model
is optional in stable network situations.

TABLE 3. Overall system performance of vita.

Parameters Data set-Vancouver Data set-Hong Kong Medusa [ ]
Time delay 
(msec)

Common With S3M Common With S3M N/A

Max.: 22636, Min.: 
2399

Max.: 21319, Min.:
10388

Max.: 15682, Min.: 
2399

Max.: 20326, Min.: 10415 Max.: 138758.3,
Min.:40617.16

Ave.: 10577 Ave.: 12804 Ave.: 11507 Ave.: 12913 Ave.: 63988.86

Battery con-
sumption

80mAh/45mins 140mAh/45mins 80mAh/45mins 140mAh/45mins N/A

Network 
overhead

0.85MB/220 requests 1.27MB/231 requests 0.83MB/216 requests 1.23MB/223 requests N/A

42
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The experimental results are summarized in Table 3. We
find that the results in Vancouver and Hong Kong are very
similar, with all averaging about 11s in the common config-
uration and 12.8s with S3M loaded. Under the same condi-
tions, the additional time delay with S3M is low, while the
increase in battery consumption and network overhead are
relatively higher, at about 75% and 43% respectively. Based
on these results, developers can choose whether or not to
integrate the S3M model according to their specific purposes
when developing mobile crowdsensing applications on Vita.
Moreover, we make a simple comparison with the related
work Medusa [42], where the corresponding time delay is
about 64s, although their runtime environments are different.
The main reasons for this are that Medusa adopts the com-
mercial Amazon AMT as the crowdsourcing platform and
Short Message Service (SMS) to deliver the message, which
involves delays of about 31s and 27s, respectively. In contrast,
Vita uses open sourced services to develop the customized
crowdsensing platform and exchanges service requests using
standard web service messages, which is more efficient than
the approach of Medusa.

2) TIME EFFICIENCY AND COMPUTATIONAL OVERHEAD
OF CONCURRENT TASKS
As Vita adopts RESTful Web Services, mobile applications
developed in Vita are based on web services. Also, each
mobile device may need to execute multiple tasks simul-
taneously in the practical application scenarios of crowd-
sensing. Thus, we developed a web service based applica-
tion on Vita, which calculates the representative benchmark
N-Queens Puzzle [43] both in mobile devices and the cloud
platform of Vita, so as to test the efficiency and computational
overhead (battery consumption) of Vita’s tasks. In addition,
as the communication overhead of the system itself has been
evaluated in the last part, and the additional communication
overhead mostly depend on the types of applications (i.e.,
multimedia related or textual content), thus in this part we
skip this aspect. In the experiment, we use Google Nexus
S (Android 4.1.2 version, 1500 mAh battery capacity), and
consider N from 12 to 16. The number of concurrent tasks
follows a Poisson distribution with arrival rates of E = 1 or 3
tasks per minute, respectively. The time efficiency and battery
consumption of each task were record over 1 hour periods,
then the average values were computed. We considered both
tasks completed only in the Nexus S or by the server in the
cloud platform of Vita when being uploaded to it. The screen
was shut off during the runtime of tasks.

The results are shown in Figures 14 and 15. From the
results, we find that Nexus S cannot finish the tasks whenN =
16 even when E = 1. When N < 15, both execution time and
battery consumption performances of the tasks completed in
Nexus S are better than those of tasks uploaded and completed
in the cloud. However, whenN = 15, both the time and battery
consumptions becomemuch higher whenE is changed from 1
to 3. Considering the computationally intensive nature of the
N-Queens Puzzle (whenN = 15) and the hardware capacity of

FIGURE 14. Execution time and battery consumption of the
N-queens puzzle (E = 1).

FIGURE 15. Execution time and batter consumption of the
N-queens puzzle (E = 3).

Nexus S, this means that the web service-based mobile appli-
cations developed on Vita for mobile crowdsensing appli-
cations can work with high efficiency and low overheads
in many of the popular Android devices when performing
most of the common computation tasks. Furthermore, Vita
supports applications with more complicated tasks by lever-
aging the advantages of cloud computing to process multiple
demanding tasks (with a high concurrency value E).

C. PERFORMANCE OF ASCM
As mentioned in Section III-C.1, in the social vector of
ASCM, we propose to incorporate the two approaches—
Genetic Algorithm (GA) and K-means clustering as solu-
tions for finding optimized crowd groups among different
individuals for crowdsensing application tasks. Due to the
experimental constraints, e.g., it is not easy to find enough
volunteers to do the evaluation multiple times in real world,
thus, here we set up a Java simulation program to evaluate the
performance of these algorithms. The experimental mobile
devices are also Google Nexus 10. Each experiment involves
15 people, each of whom has i social attributes indicating
whether the person has knowledge Ki. Each social attribute
has a value between 0.0 and 1.0, generated by a random
number generator. We assign these people to K groups (each
group corresponds to a task). A social attribute ai indicates
whether a person P has knowledge Ki. In other words, if P
has K i, ai = 1; otherwise ai = 0. The social vector between
a person P and a set of knowledge K is defined by

⇀
VTi,S = [a1, a2. . . . , am]
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FIGURE 16. Evaluation results of GA and K-means clustering
(different no. of tasks).

where m is an integer. Assume that there is a task Ti for
crowdsensing which is formed by a group of people Pj, where

j = 1, 2, . . . ,Li, and
N∑
i=0

Li = M (M means the number

of mobile users, and N means the number of tasks). The
social vector between a team for crowdsensing and a set of
knowledge K is defined by

⇀
VTi,K =

1
L

 L∑
j=1

⇀
VPj,K (1),

L∑
j=1

⇀
VPj,K (2) ,. . . ,

L∑
j=1

⇀
VPj,K (L)


Good teams for crowdsensing are found if |

⇀
VTi,K | is as large

as possible for all i. For GA, the simulation process ends after
1000 generations. As for K-means clustering, the simulation
process is repeated until no people need to be re-assigned
from one group to another. We evaluate the effectiveness of
GA and K-means clustering under different required numbers
of group. Figure 16 shows the results and comparison of GA
and K-means clustering. Longer distance between the people
and the centroids of groups implies that every person in the
group has knowledge in a wider range. It can be seen that
the average distance between people and the centroids of
the groups decreases when the number of tasks increases.
It is because when the number of tasks increases, the prob-
ability that people can be arranged into a farthest group is
decreased. Besides, GA achieves better performance than
K-means clustering because it can arrange people to groups
more intelligently. With GA, the average distance between
people and the centroids of groups is about 0.9 when the
required number of groups is 5. With K-means clustering, the
average distance between people and the centroids of groups
is shorter than 0.8 when the required number of groups is 5.
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We further evaluate the effectiveness of GA and K-means
clustering under different number of attributes. Figure 17

shows the results and comparison of GA andK-means cluster-
ing. Longer distance between the people and the centroids of
their group implies that every person in the group has different
knowledge. It can be seen that the average distance between
people and the centroids of the group increases when the
number of attributes increases. Besides, GA achieves better
performance because it can assign people to different groups
more intelligently. With GA, the average distance between
people and community centroids is longer than 1.2 when the
number of social attributes is 20. K-means clustering per-
forms worse than GA. With K-means clustering, the average
distance between people and the centroids of group is about
1.1 when the number of attributes is 20.
Note that GA can achieve better performance (i.e., longer

distance between the people and the centroids of their groups)
than K-means clustering but the computation overhead and
response time of GA is much higher than K-means clustering.
Thus GA should be employed only if the accuracy of assign-
ing people to different groups outweighs the response time. In
most cases, K-means clustering should be employed because
of the limited processing power of the system.

D. RELIABILITY OF S3M

Network switch
from WiFi to 3G

(13:50:55)

Task Initialed
(13:45:20)

Sending service
request with data

to the cloud
(13:46:00)

Request auto.
continue

(13:51:25)

Cloud
received

data
(13:53:24)

Turn on phone
and attain result

(13:57:42)

Cloud send
result back
(13:56:30)

TimeTurn off the
phone

(13:54:58)

FIGURE 18. Failure detection and recovery of S3M on mobile
device.

As proposed in Section III-D, we designed S3M to detect
and recover the possible service failures of mobile devices
when they are running tasks and collaborating with the cloud
platform of Vita. Here we use a practical case to demonstrate
and evaluate its feasibility. Figure 18 shows the sequence of
events. After the task on a mobile device had been initialized
and the related service request had been sent with data to
the cloud platform of Vita for processing, to demonstrate the
failures, we switched the networking access of the mobile
device from WiFi to 3G, and turned off the mobile device
for about 3 minutes during the experiment. It was found
that the task had been processed on the cloud platform of
Vita successfully, and the result of the task was eventually
returned and accomplished in the mobile device. Similar
service failures could also be detected and recovered with
the help of S3M, as S3M includes the function to store the
stage execution state on both the mobile device and the cloud
platform of Vita.

VII. RELATED WORK
There have been several research works about mobile CPS
based solutions for crowdsensing. The different works are
differentiated by: (i) Targeting some specific application sce-
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narios, e.g., using smart phone to provide feedbacks to users
about their transportation behaviors [7], monitoring personal
heart information [8], and predicting bus arrival times [44];
(ii) Using specific techniques to construct stand alone crowd-
sensing system to support multiple mobile crowdsensing
applications, e.g., using Twitter [10], and using an in-node
hardware abstraction layer and overlay management protocol
to allow multiple applications sharing sensing data across
different mobile nodes [45]; and (iii) Supporting efficient
development of different mobile crowdsensing applications;
e.g., the work in [46] aims to enable developers to write
server-side programs in lieu of distributed programs, so as
to ease the development of crowdsensing applications on
smartphones.

Partly inspired by but different from these works, Vita aims
to provide a general approach at the system and architecture
design level by leveraging the advantages of a number of
techniques, which salient parts are integrated and orchestrated
into a flexible, efficient and economic platform for devel-
opment and execution of crowdsensing applications. It not
only supports the development of multiple mobile crowd-
sensing applications with standard service interactions, but
also enables the deployment of a mobile distributed CPS
with augmented cloud computing platform,which empowers
people’s mobile devices with powerful capabilities to allow
them to easily and efficiently participate in and perform
multiple and diverse crowdsensing tasks. In the following we
contrast Vita with two existing works that are particularly
close to our work.

Medusa [42] is a programming framework that provides
a programming language and a runtime system for effi-
ciently developing mobile crowd-sensing applications, which
enables reduction of the tasks to smaller pieces compared
to standalone systems for crowdsensing applications. It
employs a distributed system architecture to coordinate the
tasks between cloud servers and smart phones. Compared
to Medusa, Vita has several advantages: (i) Vita provides
a more flexible distributed system architecture between the
mobile platform and the cloud platform. It simultaneously
supports dynamic balancing of the allocation of computation
tasks between mobile devices and the cloud platform accord-
ing to specific application requirements and scenarios, and
efficient allocation of human-based tasks among individuals.
(ii) The Amazon AMT adopted by Medusa in the execution
of crowdsensing tasks can only be used inside the USA.
Moreover, AMT is for commercial use and is not open source.
It does not support the development of customized crowd-
sensing mechanisms and platforms by third parties, while
Vita adopts open source techniques and industrial standards
such as BPEL4People, and leverages the advantages of social
networking services to set up the cloud platform, which can
therefore be more universally used, and supports flexible
extension and customized redevelopment.

On the other hand, the current weaknesses of Vita com-
paring to Medusa are mainly in two aspects: (i) Vita
lacks a mature incentive mechanism to encourage people to

participate in crowdsensing; (ii) The security of diverse
crowdsensing applications and data on Vita is still a con-
cern, as the current implementation of Vita does not include
any security mechanism. However, as Vita fully adopts an
open architecture, thus the application developers of Vita can
flexibly design different customized mechanisms to address
these issues according to their specific requirements. Further,
we shall extend Vita to include incentive mechanisms and
improve security and privacy measures in the future.
ThinkAir [47] is a software framework that supports the

migration of computation tasks of smartphone applications
to the cloud through mobile code offloading, so as to achieve
dynamic computational resource allocation and parallel exe-
cution between the smartphone and the cloud computing
platform. Different from ThinkAir, Vita adopts the RESTful
Web Service architecture both in its mobile platform and
cloud platform. In Vita, all of the data and codes of com-
putation tasks offloaded to the cloud from mobile devices
are in the format of standard web services. This enables the
data transmissions to be more application-related, making the
instance object fields a better match with the corresponding
methods, and avoiding unnecessary network overhead. Also,
Vita supports the reuse of web services. As web services are
also written as software codes, web service reuse implies code
reuse. However, more than code reuse that usually takes place
at development or compilation time, web service reuse further
enables sharing of available services among multiple mobile
applications during their runtime. This means that rather than
balancing the computation tasks between mobile devices and
the cloud platform at the coding stage, Vita also enables
this balancing to occur dynamically at run time, and mobile
users can further act as web service providers by sharing the
services available in their devices with other users directly or
via the cloud platform.

VIII. CONCLUSION
In this paper, we have presented Vita, a novel mobile CPS for
crowdsensing, which leverages the advantages of social com-
puting, service computing, cloud computing, and a number
of open source techniques across mobile devices and cloud
platform, to provide a systematic approach that supports both
application developers and users for mobile crowdsensing
applications. Our practical experiments have demonstrated
that Vita simplifies the development of multiple mobile
crowdsensing applications, and performs its tasks with a con-
siderable time efficiency, low battery consumption and low
communication overhead on mobile devices. We have also
developed sample applications based on Vita to demonstrate
its functionalities. To the best of our knowledge, Vita is the
first comprehensive open source mobile CPS that supports
the development, deployment and management of multiple
mobile crowdsensing applications or tasks in an efficient and
flexible manner. Also, Vita is the first mobile distributed
CPS that simultaneously supports the automatic allocation of
human-based tasks among individuals and computing tasks
between mobile devices and cloud platform in an efficient

VOLUME 1, NO. 1, JUNE 2013 163



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Hu et al.: Vita: A Crowdsensing-Oriented Mobile Cyber-Physical System

manner, with reliability enhancement mechanism on mobile
devices, which enables mobile users to participate in and
perform crowdsensing applications and tasks in a convenient
and efficient way.
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