
A Mobile Crowdsensing System Enhanced by Cloud-
based Social Networking Services

Xiping Hu1, Qiang Liu2, Chunsheng Zhu1, Victor C.M. Leung1, Terry H.S. Chu3,

Henry C.B. Chan3
1
 Dept. of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada

2
 School of Computer, National University of Defense Technology, Changsha, China

3
 Dept. of Computing, The Hong Kong Polytechnic University, Hongkong

{xipingh, qliu, cszhu, vleung}@ece.ubc.ca, {cshschu, cshchan}@comp.polyu.edu.hk

ABSTRACT

This paper presents TripleS, a novel mobile crowdsensing

system enhanced by social networking services, which enables

mobile users to participate and perform mobile crowdsensing

tasks in an efficient manner. TripleS provides a flexible and

universal architecture across mobile devices and cloud

computing platforms by integrating the service-oriented

architecture with multi-agent frameworks for mobile

crowdsensing, with extensive supports to application developers

and end users. The customized platform of TripleS enables

dynamic deployments and collaborations of services and tasks

during run-time of mobile devices. Our practical experiments

show that TripleS performs its tasks with a considerable

computation efficiency, and low computation and

communication overhead on mobile devices. Also, the mobile

crowdsensing application developed on TripleS demonstrates

the functionalities and practical usage of TripleS.

Categories and Subject Descriptors

C.2.4 [Computer Systems Organization]: COMPUTER

COMMUNICATION NETWORKS - Distributed Systems

General Terms

Design, Human Factors, Economics.

Keywords

Mobile crowdsensing, cloud, social networks, system

architecture

1. INTRODUCTION
In our daily lives, the ubiquitous and popular usage of mobile

devices such as smart phones and tablets with integrated sensors

such as cameras, Global Positioning System (GPS) receivers

and accelerometers results in many available sources of sensing

data. The potential use of such sensing data to enable

sophisticated context-aware mobile applications and services

has already motived a variety of innovative research.

Mobile crowdsensing refers to a broad range of community-

based sensing paradigms employing mobile devices and

wireless networks [1]. Different from conventional sensing

solutions using specialized networks of sensors, mobile

crowdsensing leverages human intelligence to collect, process,

and aggregate sensing data using individuals’ mobile devices

(e.g., using a camera to capture a specific target), so as to

realize a higher quality and more efficient sensing solution. In

general, crowdsourcing [2] aims to provide an efficient and

effective mechanism to involve participants in the general

public to solve specific problems in collaborations. Mobile

crowdsensing is a special form of crowdsourcing that solves

specific problems or answer specific questions by utilizing

sensing data from participants’ mobile devices.

A remarkable trend in mobile services is the increasing use of

mobile devices to access social networking services. The wide

availability of sensing modules in mobile devices enables social

networking services to be extended to incorporate location

based services, media tag services, etc. Therefore there is

growing interest in fusing social networking services with real-

world sensing, such as crowdsensing [3]. Social networking can

provide an ideal platform to encourage mobile users to

participate in crowdsensing. For instance, people recruited in

crowdsensing could in turn recruit their friends through the

popular social networking services to contribute to a more

pervasive crowdsensing solution by greatly increasing the

number of participants.

Different from conventional wireless sensor networking

applications, crowdsensing applications need to meet the

diverse and ubiquitous service requirement of different

participants contributing sensing data using many different

devices [1]. Currently, most of the existing mobile

crowdsensing solutions are application-specified [3-5], and they

usually follow different service interaction standards.

Consequently, two different crowdsensing applications may not

share the same type of sensing data and related services directly.

Furthermore, use of complex purpose-built sensing applications

may seriously constrain the number of participants in a mobile

crowdsensing exercise. The work in [6] that utilizes Twitter to

construct a crowdsensing system capable of supporting multiple

crowdsensing applications is a step in the right directly.

However, this system lacks the flexibility to meet the diverse

service requirements of different participants engaged in

multiple crowdsensing tasks.

There is a need for a mobile system architecture for mobile

crowdsensing with standard and universal service interactions,

so as to support the efficient development of different

customized mobile crowdsensing applications, and to

effectively manage and coordinate the diverse sensing data and

tasks of mobile crowdsensing participants during run-time. This

architecture should include services that assist users in

performing multiple crowdsensing tasks simultaneously on their

mobile devices, as users could easily miss some important

sensing data due to inability to stay focused on specific sensing

tasks. Furthermore, there is a need to integrate such an

architecture with social networking services to help expand the

scope of crowdsensing participation, ease the dissemination of

crowdsensing results, and facilitate user interactions through

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

MCS'13, December 9- 13, 2013, Beijing, China.

Copyright 2013 ACM 978-1-4503-2554-7/13/12 ...$15.00.

interfaces people are familiar with. To the best of our

knowledge, such an architecture does not currently exist. The

main objective of this work is to develop and validate an open

mobile architecture for ubiquitous crowdsensing that is

enhanced by social networking services.

To address the needs identified above that are not efficiently

met by existing systems, in this paper, we propose a novel

mobile distributed system – social networking services

enhanced crowdsensing, TripleS, for mobile crowdsensing.

Leveraging the popular social networking services by

integrating our previously proposed Aframe [7] and MS2A [8],

TripleS adopts a series of open source techniques to provide a

systematic approach for mobile crowdsensing in multiple and

diverse mobile scenarios. Our experiments show that TripleS

has affordable computation and networking overheads, and is

efficient and effective for practical applications. Our major

contributions are as follows:

 We propose TripleS, a mobile system architecture

enhanced by social networking services with software

agent support, for mobile crowdsensing across mobile

devices and cloud computing platforms, and present its

design and implementation. TripleS not only provides an

augmented service with regard to speed and quality, but

also a comprehensive, flexible, and universal solution that
supports both application developers and end users.

 We deploy and evaluate TripleS through a set of real-

world scenarios, which not only verify the feasibility of it,

but also provide practical experience that inspire future

research and development of mobile crowdsensing
applications.

The rest of the paper is organized as follows. Section 2 gives

some background on mobile crowdsensing applications, and

discusses the requirements of mobile crowdsensing systems.

Section 3 presents the overall architecture and key components

of TripleS, and discusses how it meets the requirements for

mobile crowdsensing systems. Section 4 presents strategies for

the implementation of TripleS. Section 5 shows practical

experiments to evaluate TripleS. Section 6 reviews other

systems developed for crowdsensing and compares them with

TripleS. Section 7 concludes this paper.

2. BACKGROUND
There are many examples of crowdsensing applications. In this

section we first briefly present the existing and potential mobile

crowdsensing applications, and then based on these, we discuss

various requirements of mobile crowdsensing systems, and

propose the techniques we used to develop TripleS to address

these requirements.

Vehicular social networking: A large number of people in

urban areas spend hours on their daily commute to and from

work, traveling along the same routes at about the same time.

Their travel patterns are highly predictable and regular.

Consequently, there is an opportunity to form recurring virtual

mobile communication networks and communities between

these travelers or their vehicles, i.e., vehicular social networks

(VSNs). Through mobile crowdsensing, a VSN could aggregate

travel information to measure the potential traffic congestion

[9], find the most appropriate (e.g., lowest fuel consumption,

shortest time) route in real-time [10], or provide

recommendations of parking spaces available nearby [11].

Disease report and crisis management: As many mobile

devices are equipped with an array of sensors, diverse sensing

data and citizen reports from mobile devices can be triaged and

acted on in real-time by individuals/communities, which will

facilitate disease report and crisis management. For instance,

based on a crowdsourced interactive mapping application, the

Ministry of Health in Cambodia uses GeoChat [12] for disease

reporting and to send staff alerts and rapidly escalate responses

to potential outbreaks. Also, Ushahidi [13] has been used to

crowdsource and map crisis information from multiple sensing

data streams in real-time through mobile devices, so as to

coordinate field teams’ activities and provide remote support

from outside the earthquake zone.

The above examples show that mobile crowdsensing is of much

practical use in daily lives. However, if we target to develop a

mobile crowdsensing system to support these examples, as

discussed in Section 1, there are several key technical

requirements need to be addressed. In order to address these

requirements, in developing the overall architecture of TripleS,

we adopt the design principles of REpresentational State

Transfer (REST)-ful Web Services [14], which is already

widely used for mobile applications and provides an ideal

service-oriented architecture (SOA) to support the standard

service interactions both for the development stage and at run-

time. In addition, we adopt the agent techniques developed in

our former work [7] to enable the system to adapt itself to

dynamic sensing tasks.

3. SYSTEM DESIGN
As shown in Figure 1, the overall architecture of the TripleS

system consists mainly of two parts: the mobile platform and

cloud platform. The mobile platform provides the initial

environment and ubiquitous services to enable users to

HTTP

Server

Location

Database

Matching

Logic

Profile

Repository

Privacy

Control

Search

Engine

Authentication and

authorization control

W
iF

i A
cc

es
s

Po
in

t
H

SD
PA

G

at
ew

ay

W
ir

el
es

s
A

cc
es

s
N

et
w

or
ks

Content/Services Providers

Internet

 Internet Network Opportunistic Networks

LT
E

G
at

ew
ay

IaaS Cloud Platform

Process

Runtime

Environment

Web Container

Deploy Process

Deploy

Environment

Storage

Services

Mobile Service

Provisioning

Mobile SOA

Environment

Provisioning

Mobile Web

Services

Crowdsensing

Platform

Crowd-

sensing

Data

Provision

Mobile

SOA

Package

Storage

Management Interface

TripleS – Cloud
Platform

Mobile SOA Framework

Service Layer

Mobile SOA Server

Web Services

Application Instance Layer

User Interface

Crowd

services

Service

management

services

Social

services

Web service response

 – Service composition

Sensing

service Context-

awareness

service

Web service request

Aframe

Owner Application Layer

Mobile Agent Layer

Resident Agent Layer

Framework Service Layer

Application

specific services

TripleS on
Mobile
Device
Side

User 1

User 2

User 3

User N

RFID

Sensors

Peripheral

Sensors

Healthcare

sensors

OBD on board

vehicles

User 0

Figure 1. Overall architecture of the TripleS system

participate in and operate crowdsensing tasks through their

mobile devices. The cloud platform provides a central

coordinating platform to store and integrate the diverse data

from mobile crowdsensing and social networking service

providers, as well as the development environment to support

developing mobile crowdsensing applications. In this section,

we present the key components of TripleS, and discuss how

they meet the requirements of mobile crowdsensing as stated

above.

A. TripleS – cloud platform

For the design of the cloud platform of TripleS, we also adopt

RESTful Web Service based architecture design methodologies

and specifications, so as to provide a universal and seamless

architecture across the mobile and cloud platform of TripleS.

The cloud platform of TripleS mainly consists of four

components: management interface, storage service,

deployment environment, and process runtime environment.

Management interface: It provides the development

environment and application programming interfaces (APIs) to

support application developers and enable third party service

providers to participate in the development of different

applications, services, and application-specific platforms for

mobile crowdsensing. Also, it makes use of open APIs provided

by commercial social network websites like Facebook to access

social networking services and disseminate some crowd based

social information to the popular social networks.

Storage service: It supports automatic backup of TripleS

system data, such as data related to software services,

installation files of TripleS in the mobile devices, task lists and

results of mobile crowdsensing, and sensing data uploaded by

the mobile devices through TripleS.

Deployment environment: It enables dynamic deployments of

the mobile platform and various web services of TripleS to

mobile devices, so as to support their users’ participation in

different mobile crowdsensing applications. Also, it could

automatically deploy new applications and services uploaded by

developers to the process runtime environment for executing

diverse mobile crowdsensing applications.

Process runtime environment: It is based on the open source

techniques (more details will be provided in Section 4), and

provides the crowdsensing platform, which could coordinate,

process, and combine multiple crowdsensing results from

different mobile devices in real-time.

B. Mobile SOA framework

The mobile SOA framework is an extensible and configurable

framework that is based on the specifications and

methodologies of RESTful Web Services. It integrates social

networking services and adopts an SOA to support the

development of multiple mobile crowdsensing applications and

services in an efficient and flexible way, with standard service

interaction specifications that enable dynamic sensing service

collaboration during mobile devices’ run-time. As shown in Fig.

1, this framework mainly consists of two layers: the service

layer and the application instance layer, both of which can run

on the same mobile device simultaneously.

Service layer of mobile SOA framework: This layer is

integrated with the mobile SOA server to address the needs of

application developers. Using the service-oriented

programming model, developers can easily implement a variety

of web services based mobile applications and services for

crowdsensing. The web services in this layer are enabled by the

mobile SOA server. Application developers can take full

advantage of SOA to efficiently and flexibly extend the web

services, or integrate the exist web services at this layer to

generate different mobile crowdsensing applications. Moreover,

developers can also design mechanisms or algorithms for

service compositions at this layer, so that multiple applications

developed on TripleS can automatically and intelligently access,

use or collaborate with the running web services shared among

the mobile devices at run-time. In the current version, there are

mainly five types of web services in this layer.

Sensing services: are used to aggregate and process the sensing

data in the mobile devices, such as location information service,

metadata of pictures/photos service, and service to obtain a

vehicle’s status through the onboard diagnostic module. Also, it

contains the web service that could receive and process the

sensing data collected by mobile agents (through Aframe) from

local opportunistic networks.

Social services: make use of the open APIs provide by the

popular social networking services like Facebook and Twitter,

and encapsulate them to web services. They enable the

crowdsensing requests to be posted through popular social

networks, which could help to spread the requests quickly and

encourage more people to participate in crowdsensing. They

can also provide basic social information that could be

integrated with other modules and services of TripleS; e.g.,

these services could enrich the sensing information when

integrated with sensing services.

Crowd services: support the posting of crowdsensing tasks,

fetching the crowdsensing task list from the cloud platform of

TripleS, processing the results of mobile crowdsensing in the

local mobile devices, and submitting the crowdsensing results

through the Internet to the cloud platform of TripleS for further

analysis in combination with the crowdsensing results from

other mobile users. In addition, as these services utilize the

communication service between the mobile devices and cloud

platform of TripleS through the Internet, they could also

support the balancing of computation tasks between the mobile

devices and the cloud platform of TripleS, so as to improve the

task efficiency of crowdsensing and save energy consumption

in mobile devices.

Context-awareness service: is based on our former work [9]. It

could dynamically and automatically match the sensing data to

the appropriate crowdsensing applications during mobile

devices’ run-time.

Service management services: are used to manage all the

available web services in TripleS, such as services for

registering new services, monitoring currently available

services, and scheduling the services for collaborations. These

services also allow application developers to design new

mechanisms or extensions that can be incorporated into new

applications.

Application instance layer of mobile SOA framework: This

layer is oriented towards the realization of concrete applications,

and every application instance in this layer can work

independently. Application developers only need to develop the

user interface with the related application instances in this layer,

through which the end users of TripleS can directly access the

corresponding application.

C. Aframe

Aframe [7] is an agent-based application programming

framework for mobile wireless ad-hoc networks, which we have

designed and implemented previously. As shown in Fig. 1, it

consists of four layers: framework service layer, resident agent

layer, mobile agent layer, and owner application layer. The

framework service layer provides the generic services, which

support collaborations among multiple agents working in

multiple devices simultaneously, such as supporting multiple

mobile agents to dynamically and self-adaptively execute

different applications around opportunistic networks. The other

three layers are open to application developers. Based on the

programming model of Aframe, developers could easily and

efficiently develop agent based applications and services, such

as developing different mobile agents to automatically and/or

opportunistically collect and process the sensing data locally in

a mobile device, and developing owner applications to define

the strategies about the processing of sensing data that are

collected by the mobile agents. In the TripleS system, we

mainly adopt the Aframe to automatically and dynamically

aggregate and process the sensing data with the services in the

mobile SOA framework locally in mobile devices and across

opportunistic local networks for mobile crowdsensing.

4. IMPLEMENTATION STRATEGIES
In this section, we discuss how the two main parts of the

TripleS system can be implemented in practice.

A. Implementation of cloud platform of TripleS

In the current version of TripleS, we adopt the Amazon Web

Service (AWS) infrastructure services (i.e., EC2 and S3) and a

series of open source techniques, such as Apache ODE, Apache

Tomcat, Business Process Execution Language (BPEL) and its

extension BPEL4People [15] for the implementation of

TripleS’s cloud platform. Other infrastructure-as-a-service

(IaaS) cloud computing platforms that are not AWS based could

also be used to implement the TripleS cloud platform. It

consists of four parts: management interface, process runtime

environment, storage service, and deployment environment.

Management interface: The Management interface is

implemented by integrating the Apache ODE management

interface and the development environment provision interface.

For instance, as shown in Figure 2, implementation of the

development environment provision enables the ability to

download sources and/or compile releases of the software

packages that are required for setting up the development

environment, and related documentation and examples.

Management Interface

Development Environment Provision BPEL UI

(Apache

ODE)
Software

Packages
Documents

Download

Examples

Figure 2. Components of the Management interface

Process run-time environment: To implement the process

run-time environment, we adopt the apache tomcat server for

the setting up of the BPEL running environment - Apache ODE.

Based on this open source business process run-time

environment, BPEL processes and their extension

BPEL4People processes can be deployed, and the related

crowdsensing platform can be set up on top of it. Moreover, as

in the mobile platform of TripleS, its services are REST-based,

while BPEL only supports Simple Object Access Protocol

(SOAP) based web services. Thus, the BPEL4People processes

are not supported by Apache ODE. To address this issue, we

use a REST-SOAP Adapter. This adapter can receive the SOAP

service invocation requests, and transform them into the REST
service invocation requests.

Storage service: Based on the AWS S3, the storage service

wraps the APIs for all of the data storage requirements from

other modules: the sensing data both from crowdsensing

participants and/or service providers of social networks through

opportunistic networks and Internet, the related software

packages, examples of documents for the development

provisioning, and the mobile SOA environment provisioning.

Deployment environment: The deployment environment is

composed of three modules. We integrate the Apache ODE

deployment environment to form a base for the Management

Interface to support BPEL and the BPEL4People development

environment. Based on the storage service module, we

implemented the mobile SOA environment provision module.

B. Implementation of the mobile platform of TripleS

In the current version of TripleS, the mobile platform of it is

implemented based on the Android operating system. More

technical details about the Aframe and mobile SOA framework,

as well as a prototype and source codes can be found in the

website of our project [16].

Aframe in Android: In our previous work, based on

AmbientTalk [17], we have implemented a version of Aframe,

which owner applications (developed using standard Java)

could initiate mobile agents from a PC to travel around mobile

devices and process tasks automatically and self-adaptively on

them over a wireless ad-hoc network. Considering that in

mobile crowdsensing application scenarios, mobile agents

should normally be released by mobile devices, therefore we

have developed a new version of Aframe based on the Android

system, which works independently in mobile devices but could

also take full advantage of AmbientTalk.

This new version of Aframe is realized by adding a new layer -

mobile Aframe AmbientTalk library on top of the AmbientTalk

mobile libraries and class libraries of Android. In this layer, we

encapsulate the AmbientTalk virtual machine, and related basic

networking APIs provided by it as a new library of Android. On

top of this layer, we develop the Aframe Java class library, and

design a mechanism which can invoke the method

evalAndPrint(String script, PrintStream output) in the original

class library of AmbientTalk to exactly map the class attributes

between these two layers. Thus the agent-based applications of

Aframe developed by Java on Android could automatically

invoke the APIs in the mobile Aframe AmbientTalk library

layer.

Based on the APIs provided by the mobile Aframe

AmbientaTalk library that we implemented, we then developed

the framework services on the Android operating system.

Mobile agents can invoke these services through resident agents

to get real-time network information when they are dynamically

traveling around the local opportunistic network and collecting

the sensing data. After the mobile agents have successfully

collected the sensing data and returned to the original mobile

devices, they will submit the data to the owner applications,

which then automatically transfer the data to the context-

awareness service in the mobile SOA framework, and/or end

users through the user interface directly; the related strategies

could be pre-defined by the application developers or end users.

Mobile SOA Sever (I-Jetty)

Mobile SOA Framework

Web Service Request Web Service Response

Mobile Client

Web Services

Listener

Config Manager Execution Engine

Mobile Operating System

Figure 3. Architecture of mobile SOA framework

Mobile SOA framework: Similar to our work on MS2A [8],

we adopt the open source web container I-Jetty [18] to

implement the mobile SOA server, and based on the Android

system and the specifications of RESTful Web Services, we

develop the mobile SOA framework that integrates with the

mobile SOA server, as shown in Fig. 6. But different from

MS2A that targets disaster rescue and works independently

over wireless ad-hoc networks, in TripleS, the mobile SOA

framework functions as a bridge between the mobile device and

the crowdsensing platform in the cloud over the Internet. The

communications between the cloud platform of TripleS and its

mobile platform employ the standard web service format based

on the HTTP protocol and XML data format. In addition,

although BPEL interactions on the TripleS cloud side are SOAP

based, and its services in the mobile platform are RESTful Web

Services based, the SOAP-REST transformation can be

achieved using additional adapters in between, similar to the

method described above in the cloud side of TripleS.

5. EXPERIMENT
In this section, we evaluate the performances of TripleS in two

aspects: performance of mobile agents executing tasks over

opportunistic networks, and the system performance of

TripleS’s crowdsensing platform.

A. Performance of TripleS over Opportunistic Networks

The experiment consists of five persons each carrying an

Android device (three Android phones and two Android tablet,

all of which running Android version 4.0 or above) equipped

with 802.11n WiFi module and running TripleS. We use one of

the Android devices to act as a WiFi hotspot and let the others

connect to it through WiFi. As shown in Figure 4, each person

carries a mobile device denoted as node Mx and moves in an

area of about 150×150 m2. There are nine predefined positions,

and each person may initiate mobile agents to collect the

sensing data from others when he/she moves from one position

to another at a normal walking speed. There are two parts of

this experiment as following.

Figure 4. The map area of the experiment

Figure 5. Status monitoring of mobile agent

1) Tasks execution success rate of mobile agent

We evaluate the tasks execution success rate of mobile agents

under simulated conditions of mobile nodes being disconnected

in constant time intervals (T) of 30s, 20s, and 10s, or in

exponentially distributed time with rate parameter λ= 1/30, 1/20,

and 1/10, and each person initial a mobile agent to collect the

sensing data four times. The average results are calculated. Also,

as shown in Figure 5, we can monitor the status of mobile

agents through the user interface of Aframe in Android. The

results in Figure 6 show that the mobile agent of TripleS could

automatically finish most of the sensing tasks and simplify the

operation of mobile crowdsensing, except under conditions of

T=10s orλ= 1/10, which are atypical in real environments.

2) Time efficiency of mobile agent finishing sensing tasks

Similar to part 1, in this part, each person initiate one or two

mobile agents to collect sensing data. The average time

consumed under each condition is calculated. The mobile nodes

do not go to offline mode in this set of experiments. The results

in Figure 7(a) were obtained when only one person initiated a

mobile agent every time, and while Figure 7(b) shows the

results when two persons initiated two mobile agents

simultaneously every time. Comparing the results of these two

cases, we find that less time is consumed when two mobile

nodes initiate mobile agents to execute the same sensing tasks,

because the earlier agent may finish the sensing task and share

the results with mobile agents arriving later, which saves the

time to duplicate the sensing tasks.

Both set of experiments described in part 1 and part 2 above last

about 30 mins. We recorded the battery consumption of the

Android devices, and found that the battery consumption due to

running TripleS is relatively low, e.g., only about 2% in a

Google Nexus 10.

(a) (b)

Figure 6. Tasks execution success rate

(a) (b)

Figure 7. Time efficiency of finishing sensing task

B. System performance of TripleS’s crowdsensing platform

We evaluate the system performances of TripleS’s

crowdsensing platform in terms of three parameters: time

efficiency, energy consumption, and networking overhead on

mobile devices, as these parameters are of particular concern to

mobile users when they are participating in mobile

crowdsensing. The communications between the cloud side of

TripleS and its mobile platform used the standard web service

format based on the HTTP protocol and XML data format, and

the experimental environment is: Hardware: Amazon EC2 M1

Medium Instance; 3.75 GiB memory; 2 EC2 Compute Unit (1

virtual core with 2 EC2 Compute Unit); 410 GB instance

storage; 32-bit or 64-bit platform; I/O Performance: Moderate;

EBS-Optimized Available: No. Software: operating system:

Ubuntu 12.04.1; Servers: ApacheTomcat 7.0.33; BPEL engine

BPEL4People environment: ODE1.3.5.

Three Google Nexus 10 (Android 4.2.1 version, battery

capacity 9000mAh) were used as the mobile devices in these

experiments, from which we obtained three sets of data

simultaneously. A total of 10 tests were run over 3 days, and the

average results were calculated. Each experiment lasted 30

minutes. Each Nexus 10 sent crowdsensing requests to the

servers on the cloud side of TripleS according to a Poisson

distribution with an arrival rate of E=5/min, and the screen was

shut off during the runtime. The time delay refers to the delay

from the time that the Nexus 10 initiates a crowdsensing (with

no data process) request to the cloud side and the time that it

P1

P2

P3

P4

P5

P6

P8 P7

P0

M1M1 M2M2

M4M4

M3M3

M5M5

receives the responses from the servers on the cloud side of

TripleS.

The experimental results are presented in Table 1. We find that

the results of the three sets of data are very similar, with all

averaging about 12s. Moreover, we make a simple comparison

with the related work Medusa [19], where the similar time delay

is about 64s, although their runtime environments are different.

The main reasons for this are that Medusa adopts the

commercial Amazon AMT as the crowdsensing platform and

Short Message Service (SMS) to deliver the message, which

incur delays of about 31s and 27s, respectively, while TripleS

uses open source to develop the customized crowdsensing

platform and sends the service request through a standard web

service message.

Table 1. System performance of TripleS

Parameters Data set 1 Data set 2 Data set 3

Time delay

(msec)

Max.: 21319,

Min.: 10388

Max.: 20326,

Min.: 10336

Max.: 22636,

Min.: 2399

Ave.: 12629 Ave.: 12803 Ave.: 11354

Battery

consum.

53mAh/30mins 53mAh/30mins 54mAh/30mins

Network

overhead

0.53MB/135

requests

0.51MB/132

requests

0.70MB/155

requests

6. RELATED WORK
There have been several research works about mobile

crowdsensing. The different works are differentiated by: (i)

Targeting some specific application scenarios [3-5]; (ii) Using

specific techniques to construct standalone crowdsensing

system to support multiple mobile crowdsensing applications,

e.g., using Twitter [6], and using an in-node hardware

abstraction layer and overlay management protocol to allow

multiple applications sharing sensing data across different

mobile nodes [20]; and (iii) Supporting efficient development

of different mobile crowdsensing applications; e.g., [21] aims to

enable developers to write server-side programs in lieu of

distributed programs, so as to ease the development of

crowdsensing applications on smartphones.

Partly inspired by but different from these works, TripleS aims

to provide a general approach at the system and architecture

design level by leveraging the advantages of a number of

techniques, which salient parts are orchestrated into a flexible,

efficient and economic platform across Internet and

opportunistic networks for mobile crowdsensing applications. It

not only supports developing multiple customized mobile

crowdsensing applications with standard service interaction, but

also provides a mobile distributed system with augmented cloud

computing platform, that enabling users to easily and efficiently

participate in and perform multiple and diverse crowdsensing

tasks on their mobile devices.

7. CONCLUSION
In this paper, we have presented TripleS, a novel mobile system

for crowdsensing, which leverages the advantages of numbers

of open source techniques across mobile devices and cloud

platforms, to provide a systematic approach that supports both

application developers and users for mobile crowdsensing. Our

practical experiments have demonstrated that TripleS performs

its tasks with a considerable time efficiency, low battery

consumption and low communication overhead on mobile

devices. To the best of our knowledge, TripleS is the first

mobile system architecture that supports efficiently developing,

deploying and managing multiple mobile crowdsensing

applications/tasks in a comprehensive, flexible and open

platform. Also, TripleS is the first mobile distributed system

that supports agent based sensing data fusion, real-time service

collaborations between sensing services and social networking

services across opportunistic networks and Internet, which

enables mobile users to participate in and process crowdsensing

tasks in an efficient and ubiquitous manner.

8. REFERENCES
[1] X. Hu, T.H.S. Chu, H.C.B. Chan, and V.C.M. Leung. Vita:

A Crowdsensing-Oriented Mobile Cyber-Physical System.

IEEE Trans. Emerging Topics in Computing, 1(1), 2013.

[2] J. Howe, “The Rise of Crowdsourcing,” Wired, Jun. 2006.

[3] H. Lu et al. Campbell. SoundSense: scalable sound sensing

for people-centric applications on mobile phones. In Proc.

MobiSys, pp. 165-178, 2009.

[4] R. K. Balan, K. X. Nguyen, and L. Jiang. Real-time trip

information service for a large taxi fleet. In Proc. MobiSys,

pp. 99-112, 2011.

[5] P. Zhou, Y. Zheng, and M. Li, “How long to wait?:

predicting bus arrival time with mobile phone based

participatory sensing,” In Proc. MobiSys, pp. 379-392,

2012.

[6] M. Demirbas, M. Bayir, C. Akcora, and Y. Yilmaz.

Crowd-sourced sensing and collaboration using twitter. In

Proc. WoWMoM, pp. 1-9, 2010.

[7] X. Hu, W. Du, and B. Spencer. A Multi-Agent Framework

for Ambient Systems Development. Procedia Computer

Science, vol. 5, pp. 82-89, 2011.

[8] X. Hu, V. C. M. Leung, W. Du, B. C. Seet, and P.

Nasiopoulos. A Service-oriented Mobile Social

Networking Platform for Disaster Situations. In Proc.

HICSS, 2013.

[9] X. Hu, V.C.M. Leung and W. Wang. VSSA: A Service-

oriented Vehicular Social-Networking Platform for

Transportation Efficiency. In Proc. ACM DIVANet, 2012.

[10] P. Mohan, V. Padmanabhan, and R. Ramjee. Nericell:

Rich monitoring of road and traffic conditions using

mobile smartphones. In Proc. SenSys, pp. 323-336, 2008.

[11] S. Mathur et al. Parknet: Drive-by sensing of road-side

parking statistics. In Proc. MobiSys, pp. 123-136, 2010.

[12] GeoChat by InSTEDD.

http://instedd.org/technologies/geochat/.

[13] The Ushahidi Platform.

http://ushahidi.com/products/ushahidi-platform.

[14] C. Pautasso, O. Zimmermann, and F. Leymann. RESTful

web services vs. “big” web services: making the right

architectural decision. In Proc. WWW, pp. 805-814, 2008.

[15] OASIS, Web Services Business Process Execution

Language Version 2.0, April 2007. http://docs.oasis-

open.org/wsbpel/ 2.0/wsbpel-v2.0.pdf

[16] Mobile SOA and Aframe, 2013.

http://mobilesoa.appspot.com/

[17] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D'Hondt

and W. De Meuter, “Ambient-oriented Programming in

AmbientTalk,” In Proc. ECOOP, pp. 230-254, 2006.

[18] I-Jetty, 2012. http://code.google.com/p/i-jetty/

[19] M. Ra, B. Liu, T. La Porta, and R. Govindan. Medusa: A

Programming Framework for Crowd-Sensing Applications.

In Proc. MobiSys, pp. 337-350, 2012.

[20] I. Leontiadis, C. Efstratiou, C. Mascolo, and J. Crowcroft.

SenShare: Transforming Sensor Networks into Multi-

application Sensing Infrastructures. In Proc. EWSN, 2012.

[21] L. Ravindranath, A. Thiagarajan, H. Balakrishnan, and S.

Madden. Code in the air: simplifying sensing on

smartphones. In Proc. HotMobile, 2012.

