
 
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 12, No. 1s, Article xx, Publication 

date: October 2015 

SAfeDJ: A Crowd-Cloud Co-design Approach to Situation-aware 
Music Delivery for Drivers   

XIPING HU, The University of British Columbia 
JUNQI DENG, The University of Hong Kong 
JIDI ZHAO, East China Normal University 
WENYAN HU, Nankai University 
EDITH C.-H. NGAI, Uppsala University 
RENFEI WANG, IBM Canada 
JOHNNY SHEN, The University of British Columbia 
MIN LIANG, IBM China 
XITONG LI, HEC Paris 
VICTOR C.M. LEUNG, The University of British Columbia 
YU-KWONG KWOK, The University of Hong Kong 
 

Driving is an integral part of our everyday lives, but it is also a time when people are uniquely vulnerable. 
Previous research has demonstrated that not only does listening to suitable music while driving not impair 
driving performance, but it could lead to an improved mood and a more relaxed body state, which could 
improve driving performance and promote safe driving significantly. In this paper, we propose SAfeDJ, a 
smartphone-based situation-aware music recommendation system, which is designed to turn driving into a 
safe and enjoyable experience. SAfeDJ aims at helping drivers to diminish fatigue and negative emotion. 
Its design is based on novel interactive methods, which enable in-car smartphones to orchestrate multiple 
sources of sensing data and the drivers’ social context, in collaboration with cloud computing to form a 
seamless crowdsensing solution. This solution enables different smartphones to collaboratively recommend 
preferable music to drivers according to each driver’s specific situations in an automated and intelligent 
manner. Practical experiments of SAfeDJ have proved its effectiveness in music-mood analysis, and mood-
fatigue detections of drivers with reasonable computation and communication overheads on smartphones. 
Also, our user studies have demonstrated that SAfeDJ helps to decrease fatigue degree and negative mood 
degree of drivers by 49.09% and 36.35%, respectively, compared to traditional smartphone-based music 
player under similar driving situations.  
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 INTRODUCTION 
According to the statistics published by the World Health Organization (WHO) 
[WHO 2014], 1.2 million people die and 50 million people are injured or disabled on 
roads every year. Statistics in Europe show that approximately 10-20% of all traffic 
accidents result from diminished vigilance of drivers, e.g., fatigue or negative 
emotion. Previous research has demonstrated that not only does listening to suitable 
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music while driving not impair driving performance, but it could lead to an improved 
mood and a more relaxed body state (e.g., decreasing the high breath rates of drivers 
when they are fatigued), which could improve driving performance and promote safe 
driving significantly [Zwaag et al. 2012].  

In recent years, the capabilities of mobile devices such as smartphones have 
improved substantially. These capabilities include significant increases in 
computational resources (processing capability, local storage), multiple radios 
(second/third/fourth generation cellular, WiFi, Bluetooth, WiFi Direct, etc.), various 
sensing modules (cameras, accelerometer, gravity sensors, etc.), and high level 
programming languages (Java in Android, Object C in iOS), enabling mobile devices 
to form mobile cyber-physical systems (CPS) [Hu et al. 2013] and support many novel 
mobile applications in our daily lives [Hu2 et al. 2013; Hu et al. 2015].  

However, a comprehensive smartphone-based music platform specifically designed 
for vehicular users is not yet available. Some music recommendation systems 
available in the market like Last.fm [Last 2014], and the existing research work in 
mobile music recommendation like CAMRS [Wang et al. 2012], recommend music to 
users based only on their listening behavior, history, and/or locations [Baltrunas et al. 
2012]; or only focus on distributed music resource (i.e., decoder) sharing [Ayaki et al. 
2009]. Also, recent works like AmbiTune [Helmholz et al. 2013; Helmholz et al. 2014] 
only adapt the music to drivers based on the prediction of their route trajectories and 
driving speeds, but they do not include interactive methods that enable individual 
drivers to recommend suitable music in their new driving situations collaboratively. 
On the other hand, research works [Cassidy et al. 2009; Hunter et al. 2011] and our 
online survey [Driving 2014] have demonstrated that drivers' situations including 
their mood and fatigue status impact the choice of preferable music significantly 
while driving. Therefore, to achieve situation-aware music delivery for drivers via the 
smartphones they carry, two research challenges that have not been addressed by 
the existing research need to be explored: 

- How to efficiently process and identify the attributes (e.g., tempo and tonal type) 
of each song and its corresponding music-moods to enable a smartphone to 
recommend music to a driver that fits his/her real-time mood;  

- How a smartphone can effectively deal with the wide ranges of possible human 
moods and traffic conditions and recommend suitable music to a driver under driving 
situations that the driver may or may not have experienced before. 

This paper addresses the two research challenges identified above by proposing 
SAfeDJ, a novel smartphone-based situation-aware music delivery system for drivers, 
which aims to help them relieve fatigue and ease negative emotion during driving. 
Our contributions in this paper are summarized as follows: 
• To the best of our knowledge, SAfeDJ is the first smartphone-based interactive 

music recommendation system that recommends music not only based on drivers’ 
listening behaviors, but also their real-time mood-fatigue levels and traffic 
conditions. 

• We design novel interactive methods for smartphones, which orchestrate 
multiple sources of sensing data (e.g., On-Board Diagnostic (OBD) units, heart 
rate sensors, and front camera of smartphones) with drivers’ social contexts, and 
leverages advantages of cloud computing to form a seamless crowdsensing 
solution. This solution enables smartphones to collaboratively and effectively 
recommend preferable music to drivers in real-time according to each driver’s 
specific situations. 
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• We deploy and evaluate SAfeDJ through a set of real-world scenarios, which 
show that SAfeDJ helps to decrease fatigue and negative mood degrees of drivers 
by 49.09% and 36.35%, respectively, compared with traditional smartphone-
based music player under similar driving situations. 

The rest of the paper is organized as follows. Section 2 reviews the background of 
related techniques and concepts of SAfeDJ. Section 3 presents the models and key 
designs of SAfeDJ with implementation strategies, and discusses how SAfeDJ 
addresses the research challenges of situations-aware music delivery for drivers. 
Section 4 demonstrates the mobile application of SAfeDJ, and evaluates the 
performance of SAfeDJ through a set of practical experiments and user studies. 
Section 5 concludes the paper. 

 BACKGROUND 
In general, the current mobile music recommendation systems mainly follow three 
approaches [Adomavicius et al. 2005]: (i) Collaborative filtering (CF); (ii) Content-
based; and (iii) Hybrid. CF is based on the assumption that if two users have similar 
music preferences, then the songs preferred by one user will also be recommended to 
the other. A problem with the current CF approach is that it could not recommend 
new songs to users if such songs have not previously received any comments from 
any user [Su et al. 2010]. In contrast, the content-based approach recommends songs 
to user by calculating the similarity between songs. For example, if a user likes a 
particular song, then other similar songs are recommended to the user. However, as 
discussed in Section 1, driving situations may also have significant impacts on the 
choice of preferable songs, e.g., a song may be preferable to a user when he is driving 
on an open road but not in when he is stuck in a traffic congestion. Also, both the 
current CF and content-based, and even the hybrid approach (which combines CF 
and content-based) would be difficult to predict and recommend songs to individual 
drivers when they encounter new driving situations.  

As a special form of crowdsourcing [Howe 2006], mobile crowdsensing leverages 
human intelligence/experience from the general public to collect, process, and 
aggregate sensing data using individuals’ mobile devices to solve specific problems 
collaboratively [Hu et al. 2014; Hu2 2015]. Mobile crowdsensing involves 
participatory sensing or opportunistic sensing at the two ends: participatory sensing 
requires the active involvement of individuals to contribute sensing data related to 
some large-scale phenomenon, and opportunistic sensing is more autonomous and 
involves minimal user involvement [Ganti et al. 2011]. In this paper, we propose a 
novel crowdsensing-based approach to achieve situation-aware music delivery for 
drivers. Similar to the hybrid approach, we involve participants from the general 
public to provide feedbacks on several representative songs via participatory sensing. 
Based on the feedbacks, we explore the relations between the attributes of such songs 
and their corresponding music-moods, and then set up the baseline for similarity 
calculation of any new songs. However, different from the hybrid approach, we 
further leverage the computing and sensing capacity (i.e., front camera) of 
smartphone and the sensors like OBD in cars to automatically analyze the impact of 
music to drivers in different situations, and recommend music to drivers considering 
both their listening behaviors and current driving situations. Furthermore, similar to 
opportunistic sensing, we enable automatic sharing of such data (i.e., the drivers’ 
mood-fatigue changing history with information of recommended song and location) 
in an interactive manner. Also, we design novel data statistics and similarity 
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computing methods to orchestrate the interactive data in cloud, so as to achieve 
intelligent recommendations of preferable music to drivers in new driving situations. 

In addition, cloud computing is emerging as a new trend that involves the 
provision of elastic services (i.e., video-on-demand service) over networks [Sardis et al. 
2013]. Today, migrating traditional mobile services to the cloud is becoming 
increasingly important, as doing so can achieve seamless execution of resource-
intensive multimedia applications on mobile devices through parallel and distributed 
computing techniques [Ahmed et al. 2015; Ahmed2 et al. 2015]. In SAfeDJ, we adopt 
a cloud platform mainly for two purposes: (i) working with the smartphones to 
process and identify the attributes of new songs and their corresponding music-
moods, to achieve higher efficiency of music recommendation and decrease the 
battery consumption of smartphones, and (ii) working as a central coordinating 
platform to aggregate and store the sensing data from diverse drivers, to facilitate 
the orchestration of such data from different participants, and hence improving the 
intelligence of the crowdsensing-based music recommendation for individual drivers. 

 CROWD-CLOUD CO-DESIGN APPROACH 

 
Fig. 1. System architecture of SAfeDJ 
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The system architecture of SAfeDJ is shown in Fig. 1, in which we can observe the 
structure and key components of SAfeDJ. Correspondingly, Fig. 2 shows the overall 
workflow of SAfeDJ. In this section, we first propose our music-mood mapping 
(MM) methods in Section 3.1, which could process and identify the attributes (e.g., 
tempo, and tonal type) of songs and their corresponding music-moods for 
smartphones in an effective manner. Then, in Section 3.2, we introduce a new 
context model designed for smartphones, which could automatically collect and 
analyze data from multiple sensors, and infer the real-time mood-fatigue degrees of 
drivers. Finally in Section 3.3, we present our context-music mood mapping 
(CMM) methods for music recommendation, and introduce a new method to 
automatically calculate and update the satisfaction level of the recommended songs. 

 
Fig. 2. Overall work flow of SAfeDJ 

 Music-mood Mapping (MM) 
To recommend suitable music that fits the drivers’ real-time moods, we first need to 
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music, MM extracts a six-dimensional musical feature, classifies it to one of the 
existing clusters generated by some well selected representative pieces of music, and 
calculates a mood label based on the music representatives in that cluster. The final 
output of MM is a dictionary with song titles as keys and their mood labels as values. 
As shown in Fig. 2, MM consists of two processes: (i) Music feature extraction, and (ii) 
Music mood labeling. 

3.1.1 Music feature extraction 

 
Fig. 3. Six-dimensional music representation 
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rate, tempo, spectral centroid, and tonal type. The first four are temporal 
features and the last two are spectral features. Accordingly, each piece of music can 
be represented as a point in the six-dimensional space. 

The feature extraction starts from reading the digitized musical piece, which can 
be in any popular format (such as wav, aiff, aac, mp3, etc.), followed by combining the 
two channels into one, normalizing it and storing it into an array. With this 
monaural music array and the audio sampling rate, the zero crossing rate, unit 
power, and low energy rate could be calculated as follows [Tzanetakis et al. 2002]: 
 

Let 𝑥𝑥 = music array, 
𝐳𝐳𝐳𝐳𝐳𝐳𝐳𝐳 𝐜𝐜𝐳𝐳𝐳𝐳𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐳𝐳𝐫𝐫𝐫𝐫𝐳𝐳 = 1

𝑁𝑁
∑ |𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥[𝑠𝑠]) − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥[𝑠𝑠 − 1])|𝑁𝑁
𝑛𝑛=1                (1) 

𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = 1
𝑁𝑁
∑ 𝑥𝑥[𝑠𝑠]2𝑁𝑁
𝑛𝑛=1                                                               (2) 

𝐥𝐥𝐳𝐳𝐥𝐥 𝐳𝐳𝐜𝐜𝐳𝐳𝐳𝐳𝐜𝐜𝐞𝐞 𝐳𝐳𝐫𝐫𝐫𝐫𝐳𝐳 = # of point k with x[k]2<𝑢𝑢𝑛𝑛𝑢𝑢𝑢𝑢 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑙𝑙𝑝𝑝𝑛𝑛𝑙𝑙𝑢𝑢ℎ 𝑝𝑝𝑜𝑜 𝑥𝑥

                                (3) 
 

Tempo: Based on a well-established tempo tracking algorithm as described in 
[Tzanetakis et al. 2002], we design and implement a new music tempo module. The 
algorithm of this module goes in several steps. First we take a down-sampled copy of 
the absolute value of the music array with down-sample rate 32: 
y = downsample(|x|, 32)                          (4) 
Then we compute the autocorrelation of the above output, and limit its minimum 
value to 0: 
y′[k] = max (∑ 𝑦𝑦[𝑠𝑠]𝑦𝑦[𝑠𝑠 − 𝑘𝑘]n , 0)            (5) 
Then we take an approximately 4 seconds section of the above output: 
y′′ = y′[ fs

32×4
: 4×fs
32

]                                   (6) 

where 32 is the down-sample rate. The above output is fed to a 50th-order one 
dimensional median filter for smoothing. We then calculate a 5th order polynomial 
fitting of the above output, and subtract the post-fit data from the pre-fit data, 
followed by a normalization process. The resulting data should contain clear peaks 
whose positions indicate the tempo of the original musical piece. Then we apply a 
peak picking algorithm to the data, with minimum peak height of 0.5 and minimum 
peak distance fs / (32×4) as constraints. With a scaling factor to transform the 
current scale back to the beats per minute (bpm) scale, the first peak position in the 
bpm scale is the tempo in question. 
 

Spectral centroid: The original music array in time domain needs to be 
transformed into frequency domain before calculation. The transformation is 
performed by applying discrete Fourier transform to the array: 

Xk = ∑ 𝑥𝑥𝑛𝑛 𝑒𝑒−
𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋
𝑁𝑁𝑁𝑁

𝑛𝑛=0 , 𝑘𝑘 ∈ 𝑍𝑍(𝑠𝑠𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑒𝑒𝑖𝑖𝑠𝑠),                   (7) 
𝑤𝑤ℎ𝑒𝑒𝑖𝑖𝑒𝑒  𝑁𝑁 = 2𝑢𝑢 , 𝑖𝑖 ∈ 𝑍𝑍, 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑖𝑖ℎ𝑎𝑎𝑖𝑖 2𝑢𝑢−1 < (𝑙𝑙𝑒𝑒𝑠𝑠𝑠𝑠𝑖𝑖ℎ 𝑜𝑜𝑜𝑜 𝑥𝑥) ≤ 2𝑢𝑢. 

Then we take the single side amplitude spectrum by taking the absolute value of 
the first half of X. 

X′ = |𝑋𝑋 �0: 𝑁𝑁
2
� |                                                            (8) 

Also, the original linear spaced number scale is updated to linear frequency scale: 
fk = fs∗k

N
, 𝑘𝑘 ∈ [0, 𝑁𝑁

2
]                                                 (9) 
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With these, the spectral centroid can be calculated as: 

𝐜𝐜𝐬𝐬𝐳𝐳𝐜𝐜𝐫𝐫𝐳𝐳𝐫𝐫𝐥𝐥 𝐜𝐜𝐳𝐳𝐜𝐜𝐫𝐫𝐳𝐳𝐳𝐳𝐜𝐜𝐜𝐜 = ∑ 𝑋𝑋𝜋𝜋
′∗𝑜𝑜𝜋𝜋k

∑ 𝑋𝑋𝜋𝜋
′

𝜋𝜋
, 𝑘𝑘 ∈ [0, 𝑁𝑁

2
]                (10) 

 

Tonal type: The last feature tonal type indicates the overall color of a musical piece. 
Generally there are 3 tonal types, namely, major, minor, and none [Gómez 2006]. To 
calculate tonal type, we first transform the amplitude spectrum into a chromagram, 
which is a representation of the accumulated strength of every musical pitch classes 
within a given music piece signal [Pauws 2004]. To get a chromagram, the frequency 
bins of amplitude spectrum below 20Hz is cut, and then all the bins’ frequency 
dimensions are mapped to the midi number dimension, 
Mk = 𝑖𝑖𝑜𝑜𝑠𝑠𝑠𝑠𝑟𝑟(12 ∗ log2 �

𝑜𝑜𝜋𝜋
440
� + 69)        (11) 

where 69 is the midi number of the A above middle C (frequency = 440 Hz). This A 
note is provided as the standard reference for converting frequency number to midi 
number [Fujishima 1999]. The midi numbers are then mapped to midi pitch classes 
(MPCs) simply by taking modulo 12. 
MPCk = 𝑚𝑚𝑜𝑜𝑟𝑟(𝑀𝑀𝑘𝑘 , 12)                            (12) 

The 12 bin chromagram is finalized by summing up values of all MPCs with the 
same pitch class. After we have a 12 bin chromagram, we proceed to calculate 
tonality by applying a tonal gravity idea, which is based on the idea describe in 
[Pauws 2004]. If the tonal gravity is at pitch x, and tonal type is major, then the sum 
of the chromagram at bins located at x major scale will have the maximum value 
among all scales. The same is also true for the tonal gravity of minor tonal type. 
major[k] = chroma[k] + chroma[(k + 2)%12] + chroma[(k + 4)%12] + chroma[(k +
5)%12] + chroma[(k + 7)%12] + chroma[(k + 9)%12] + chroma[(k + 11)%12]            (13) 
minor[k] = chroma[k] + chroma[(k + 2)%12] + chroma[(k + 3)%12] + chroma[(k +
5)%12] + chroma[(k + 7)%12] + chroma[(k + 8)%12] + chroma[(k + 10)%12]            (14) 

Note that major [(k+3) % 12] = minor [k], where “%” is the modulo operator. We 
compare the chroma bin value maximum entry of both major and minor, take (b+3) % 
12 and b for example, if chroma [(b+3) % 12] > chroma [b], the tonality will be a 
major at (b+3) % 12, if chroma [(b+3) % 12] < chroma [b], the tonality will be minor at 
b, otherwise, there will be no tonal gravity nor tonal type. 

3.1.2 Music mood labeling 
ALGORITHM 1.  Music Mood Labeling 
Input: Musical pieces. 
Output: A [song title, mood label, music feature] dictionary of the musical pieces.  
Initialize: static references = 21 clusters centered at 21 music representatives’ feature points 
in 6D space, all of the 21 points are initialized with mood labels; distance threshold = DT,  
for each musical piece in this music library: p = this musical piece; fe = music feature extract(p) 
1. if distance of p and every references(static+dynamic) is larger than DT 
create a new cluster centered at p, and assign mood label of nearest point to p 
2. else           cluster p to the nearest cluster 

update the cluster centroid to be the mean of every points in this cluster 
assign mood label to p using the mean of mood labels in this cluster 

3. async task: dynamic references = a new music point whose mood label is confirmed by 
crowd history   

 
Algorithm 1 describes the process of music mood labeling. 
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Static reference: Our final goal is to assign a mood label to each musical piece 
going through this music mood mapping process, but a big question is where the 
“mood” comes from. Just as can be seen in a lot of online music channels, human 
tends to affiliate mood labels to music [Last 2014], such as “groovy”, “sad”, “happy”, 
“lively”, “energetic”, etc. These are evidences showing that music has not only 
“musical” dimensions, but also “mood” dimensions. Also, there are underlying 
connections between these two sets of dimensions [Hu 2010]. In order to establish a 
reference point that could serve as the ground truth of mood representation of music, 
we first set up also a six-dimensional space representing music mood based on 
previous music mood researches [Hu 2010]. The representation is [lively, energetic, 
sentimental, groovy, noise, peaceful], or simply, [L,E,S,G,N,P], each with a value 
ranging from 0 to 1. Then we manually chose 21 representative songs, each based on 
our own humanized judgment on its mood being dominated by only one dimension or 
only two dimensions (totally 21 possibilities). After that, we involved 224 participants 
from the general public in our online survey [Music 2014], and they were asked to 
vote on each song the dominant moods, given the [L,E,S,G,N,P] multiple selections. 
After voting, a six-dimensional mood label is generated at each entry, showing the 
percentage of positive votes for the song’s [L,E,S,G,N,P] label respectively. Note that 
we do not assume that the voting results will be as the same as what we initially 
think these songs might be, but our effort is only to try to make sure that these 21 
songs can represent as many as 21 different musical classes. Thus these 21 songs 
serve as a static reference, which refers to 21 static music clusters, each of which 
contains one point in the six dimensional music feature space that is attached with a 
confirmed mood label in the six-dimensional mood feature space. 
Music clustering: When a piece of music is input to this process, it is first reduced 
to a 6-dimensional music feature using the process described in Section 3.1.1, and 
then this feature is compared to the centroids of the existing clusters. The centroid 
with smallest Euclidean distance wins and this new input is grouped into that 
cluster. 
Dynamic reference: Considering that the 21 songs used in the static reference may 
not represent all the possible styles of different music precisely, we also adopt the 
scheme of dynamic reference. From Fig. 2, we can observe that there is a process 
called satisfaction calculation of songs (details of which will be introduced in Section 
3.3.2), which provides inputs to the dynamic references. For example, if there is a 
song title in crowd history with a high satisfaction score (e.g., >0.8), and it has 
already been recommended 10 times, it is considered as a dynamic reference point, 
which can be added to the reference pool together with its mood label in crowd 
history. If it is already in the reference pool, only the mood label is updated. Once 
this dynamic reference is added, it is also being clustered as described in the above 
subsection. 
A New cluster: Similar to dynamic reference, a new cluster is created with center at 
this point and the mood label of its nearest point is assigned to it, when a new input 
is too far away from (e.g., distance of overall music features more than the smallest 
distance between the static references) all the static references. Also, this point is 
counted as one of the static reference points. 
Mood calculation: The mood label of a new input is assigned as the mean of all the 
reference points’ mood labels of the cluster it belongs to. Simultaneously, all the 
mood labels in that cluster will be refreshed whenever a new reference point is added 
to an old cluster. 
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Music mood dictionary – final output 
After all the above steps, a musical piece is mapped to a mood label. Thus the final 
output of this process applying to a smartphone running SAfeDJ is a music mood 
dictionary (MMD) with song titles as keys and their mood labels - Ssongi as values as 
shown in Table 1. 

Table I. Music mood dictionary (MMD) 

 
 

Furthermore, considering the intensive computing overhead of MM on 
smartphones, we deploy the MM both on smartphone and SAfeDJ cloud. Then the 
cloud could assist smartphones to run MM and directly return the results (i.e., music 
dictionary shown in Table I) to the smartphones, so as to improve the efficiency and 
decrease battery consumption of smartphones when running SAfeDJ. Some 
experimental results about this will be presented later in Section 4.1 and Section 4.4. 

 Context Model 
The context model is designed for smartphones to automatically collect and analyze 
data about drivers from multiple sensors in real-time. This model is shown by the 
green boxes in Fig. 1 as input data for each car (or driver). It includes three major 
categories: social context (SC), traffic context (TC), and human mood-fatigue context 
(HMC). The above contexts can be obtained from different kinds of sensing data, and 
then used as key contexts to support the predictions of drivers’ music preferences 
while driving as presented in Section 3.3.  
 
SC: From our online surveys [Driving 2014], we observe that the probabilities of two 
drivers favor the similar style of music in the same driving context are higher when 
their SC (i.e., gender) are closer. Thus, in our current design of SAfeDJ, the data 
about SC is obtained from the user profiles of Facebook, which includes the cultural 
background, gender, age, and driving experience of a driver. Also, it includes the 
interaction history of a driver with friends in his social circle. In addition, we plan to 
integrate the data from the professional social networking music websites like 
SoundCloud and Deezer, so as to further analyze the users’ music interest pattern in 
the future evolution of SAfeDJ. 
 
TC: It expresses information about the traffic condition that a driver is situated in. 
This includes the location, weather, road surface condition, traffic congestion, etc. The 
location data can be obtained automatically by a smartphone using its onboard 
Global Positioning System (GPS) receiver, while the weather and traffic related 
information can be obtained from the Internet accordingly. The data about TC can 
also be acquired by aggregating traffic condition data reported by individual drivers. 
 
HMC: We design a mood-fatigue detector in HMC, which can collect and analyze 
multiple sensing data on a smartphone to infer the real-time mood-fatigue degrees of 
the driver. As shown in Fig. 4, the mood-fatigue detector mainly considers the data: (i) 
engine rpm (RPM), throttle input (Tht) and driving speed (Sp) from OBD-II; (ii) heart 
rate (Hr) and in-vehicle temperature (T) from wearable sensors; (iii) facial expression 
and blinking frequency of the driver’s eye-lid (EI) from the front camera of 

user_id Song Title S songi - music_mood [L,E,S,G,N,P] music_features
0 American Idiot -Green Day [0.434783, 0.913043, 0.086957, 0.347826, 0.173913, 0] [0.152975,0.110374,0.698956,0.575,0.165831,1]
0 Better That We Break-Maroon [0.304348, 0, 0.565217, 0.043478, 0, 0.347826] [0.157671,0.093225,0.715329,0.49375,0.201159,1]
0 Bring Me to Life-Evanescence [0.086957, 0.304348, 0.608696, 0.173913, 0.304348, 0.173913] [0.143611,0.09379,0.711815,0.78125,0.167227,-1]
0 Dancing Queen-ABBA [0.695652, 0.521739, 0.130435, 0.521739, 0.086957, 0.130435] [0.163954,0.064364,0.703567,0.61875,0.163235,1]
0 Don't Know Why-Norah Jones [0.086957, 0, 0.521739, 0.086957, 0, 0.782609] [0.075943,0.021805,0.790892,0.36875,0.109837,1]
0 … … …
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smartphones; and (iv) road congestion situation from online traffic service (e.g., 
Google map). Based on the above sensing data, we develop a process to analyze the 
mood-fatigue degrees in the detector. In this process, the status of a driver’s mood are 
classified into six dimensions: aggressiveness, patience, neutral, happiness, sadness, 
and anger, and then the degrees of the six dimensional moods and fatigue are 
inferred and quantified as float data (from 0 to 1.0). 

 
Fig. 4. Structure of the data used in the driver’s mood-fatigue detector 

Table II. User history table (UHT) in the crowd history dataset 
Hist
._id 

use
r_id 

fatigu
e_deg. 

aggre
ssive
_deg. 

neut
ral_d
eg. 

happ
y_de
g. 

sad_
deg. 

anga
ry_d
eg. 

patie
nce-
deg. 

longi
tude 

latit
ude 

music scores-
Sx[L,E,S,G,N,P] 

tim
esta
mp 

1 2367
3 

0.8 0.4 1 0 0 0 0.6 122.0
85 

37.42
2 

[0.71,0,0.1,0.9,0,
0.65] 

16:31
:30 

2 1465
5 

0.2 0.8 0.8 0 0 0.2 0.2 120.6
66 

38.52
3 

[1,1,0,1,0,0] 16:32
:31 

3 1788
7 

0.6 0.6 1 0 0 0 0.4 123.7
85 

37.12
3 

[0,0,1,0,0,0] 16:33
:33 

4 2367
3 

0.4 0.3 0.1 0.9 0 0 0.7 122.1
33 

37.33
3 

[1,0.2,0,1, 
-0.2,0.87] 

16:35
:35 

… … … … … … … … … … … … … 
 

Finally, after all the data about SC, TC and HMC have been collected and 
contextualized, we design a mechanism that enables the smartphone of each driver to 
automatically synchronize such contexts to the crowd history dataset (see Fig. 1) in 
SAfeDJ cloud 5s before the end of each song being played. An example about the user 
history table (UHT) of such dataset is shown in Table II. 

In addition, preserving the privacy of the users, e.g., in terms of their geographical 
locations and personal music preference, is always a concern. Different approaches 
have been proposed to provide privacy-preservation by transforming the data, e.g., 
adding noise [H. Ahmadi et al. 2010]. In the context of location privacy, it ensures 
that the user’s location is indistinguishable from at least K-1 other users. To achieve 
K-anonymous location privacy, one common approach is to incorporate a trust server 
that is responsible for removing the user’s ID and selecting an anonymizing spatial 
region containing the user and at least K-1 other users [K. Vu et al. 2012]. Even 
though the current implementation of SAfeDJ does not incorporate any privacy 
preserving mechanism yet, these cloaking and anonymization techniques can be 
applied to provide privacy preservation on the geographical location and music 
interests of users in our system in the future. 

 Context-music Mood Mapping (CMM) and Music Recommendation 
As discussed at the beginning of this paper, there are many different possible types of 
human moods and traffic conditions in a driver’s daily life. Therefore it would be 
difficult for individual smartphones to predict and recommend suitable music to a 
driver in new driving situations that have not been encountered before. For instance, 
there may be records that some songs were preferable to a driver driving in 
mountains with a happy mood, while there is no music record corresponding to 
situations when this driver is driving in similar mountains but with a sad mood, or 

Mood Fatigue

Engine 
RPM

Context

Throttle Input 
Positions

Facial 
Expression

Road 
Situation

Car 
State

Anger Sadness Happiness Neutral Speed In-Vehicle 
Temperature

HR/
HRV Eye-lid Car 

State
Road 

Situation

SpeedIn-Vehicle 
Temperature
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driving on bumpy roads for the first time but with a similar happy mood. In Section 
3.2, we have presented the context model designed for smartphones, which enables 
an in-car smartphone to automatically collect and analyze the data of an individual 
driver's SC, TC and HMC with satisfaction scores of songs, and synchronize the 
processed data to SAfeDJ cloud in real-time. In this part, we further propose the 
CMM and music recommendation methods. These methods could effectively analyze 
and orchestrate the data from different parties in the SAfeDJ cloud, so as to enable 
different in-car smartphones to help each other and recommend preferable music to 
individual drivers in their new driving situations. 

3.3.1 Context-music mood mapping (CMM) 
The main idea of CMM is to use statistical methods to explore each type (SC, TC, 
HMC) of context’s impact on music choice in driving situations, and then use 
similarity computing methods to calculate the context similarities between multiple 
drivers to achieve situation-aware music delivery. For example, as shown in Fig. 5, to 
recommend a song to Driver A while he is driving, we can calculate the context 
similarity between Driver A and Driver X (from crowd history dataset shown in Fig. 1) 
in terms of their SC, TC and HMC. If the overall similarity between them is high, it 
means the probability that Driver A and Driver X prefer the same style of music in 
the similar driving situations is high. Then the satisfaction score of music recorded 
with the specific driving situations from Driver X could be used as a reference. 
Likewise, the similarities between other drivers and Driver A could be calculated, 
and then their satisfaction scores of music could be used together with Driver X’s 
score as overall references for music recommendation to Driver A in his new driving 
situations. 

 
Fig. 5. Example of similarity computing in CMM 

A. Data statistics and similarity computing 
In CMM, the context similarity between two drivers like Driver A and Driver X is 

initially defined as sim_ini(DA, DX) in equation (15), where Sim(DA_S, DXS) is the SC 
similarity, Sim(DA_t, DXt) is the TC similarity, and Sim(DA_hm, DXhm) is the HMC 
similarity, and Ws, Wt, Whm are the weights for ST, TC, and HMC, respectively. 
NDA_Sinput, NDA_tinput, NDA_hminput are the number of items about SC, TC, and HMC from 
Driver A, respectively, and NDX_Sinput, NDX_tinput, NDX_hminput are the number of items about 
SC, TC, and HMC, respectively, which could be provided in the historic record of Driver 
X. Finally, the overall context similarity sim(DA, DX) between these two drivers is 
calculated as the weighted average similarity shown in equation (19). 
𝑠𝑠𝑠𝑠𝑚𝑚_𝑢𝑢𝑛𝑛𝑢𝑢(𝐷𝐷𝐴𝐴,𝐷𝐷𝑋𝑋) = ∑ 𝑆𝑆𝑠𝑠𝑚𝑚�𝐷𝐷𝐴𝐴_𝑠𝑠,𝐷𝐷𝑋𝑋𝑠𝑠�𝑊𝑊𝑠𝑠

𝑁𝑁1
𝑗𝑗=1 + ∑ 𝑆𝑆𝑠𝑠𝑚𝑚�𝐷𝐷𝐴𝐴_𝑢𝑢,𝐷𝐷𝑋𝑋𝑢𝑢�𝑊𝑊𝑢𝑢 +𝑁𝑁2

𝑗𝑗=1 ∑ 𝑆𝑆𝑠𝑠𝑚𝑚�𝐷𝐷𝐴𝐴_ℎ𝑚𝑚,𝐷𝐷𝑋𝑋ℎ𝑚𝑚�𝑊𝑊ℎ𝑚𝑚
𝑁𝑁3
𝑗𝑗=1        (15) 
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𝑁𝑁1 = 𝑚𝑚𝑠𝑠𝑠𝑠 (𝑁𝑁𝐷𝐷𝐴𝐴_𝑠𝑠𝑖𝑖𝜋𝜋𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑁𝑁𝐷𝐷𝑋𝑋𝑋𝑋𝑖𝑖𝜋𝜋𝑖𝑖𝑖𝑖𝑖𝑖) (16) 

𝑁𝑁2 = 𝑚𝑚𝑠𝑠𝑠𝑠 (𝑁𝑁𝐷𝐷𝐴𝐴_𝑢𝑢𝑖𝑖𝜋𝜋𝑖𝑖𝑖𝑖𝑖𝑖,𝑁𝑁𝐷𝐷𝑋𝑋𝑖𝑖𝑖𝑖𝜋𝜋𝑖𝑖𝑖𝑖𝑖𝑖) (17) 

𝑁𝑁3 = 𝑚𝑚𝑠𝑠𝑠𝑠 (𝑁𝑁𝐷𝐷𝐴𝐴_ℎ𝑚𝑚𝑖𝑖𝜋𝜋𝑖𝑖𝑖𝑖𝑖𝑖
,𝑁𝑁𝐷𝐷𝑋𝑋ℎ𝑚𝑚𝑖𝑖𝜋𝜋𝑖𝑖𝑖𝑖𝑖𝑖

) (18) 

𝑠𝑠𝑠𝑠𝑚𝑚(𝐷𝐷𝐴𝐴,𝐷𝐷𝑋𝑋) = 𝑠𝑠𝑢𝑢𝑚𝑚_𝑖𝑖𝜋𝜋𝑖𝑖(𝐷𝐷𝐴𝐴,𝐷𝐷𝑋𝑋)
𝑁𝑁1∗𝑊𝑊𝑋𝑋+𝑁𝑁2∗𝑊𝑊𝑖𝑖+𝑁𝑁3∗𝑊𝑊ℎ𝑚𝑚

 (19)  

To define the values of Ws, Wt, Whm, we need to explore and quantify the impact of 
SC, TC, and HMC on music choice while driving. Thus, we set up an online survey 
[Driving 2014], in which 505 participants with driver licenses were involved globally. 
Based on the data collected from this survey, we adopt the professional data 
statistics software Stata 13 [Stata 2014] to analyze the data. In addition, we also use 
these data as the initial dataset of the crowd history dataset in SAfeDJ cloud, so as to 
avoid the potential cold-start problem (i.e., no user records of SAfeDJ at the very 
beginning) [Ness et al. 2009]. The experimental setting and outputs of Stata 13 are 
shown in Table III. From this table, we can observe that with the stated 95% 
confidence intervals, the average coefficients of SC, TC and HMC are 0.347, 0.254, 
and 0.956, respectively. The higher coefficient value means the higher impact of the 
corresponding type of context on music choice. Thus, from these results, and 
Ws+Wt+Whm=1.0, 0.374+0.254+0.956=1.584, we can define: Ws=0.374/1.584=0.223, 
Wt=0.254/1.584=0.163, Whm=0.956/1.584=0.614. Note, as we have discussed in Section 
3.2 that TC may impact the mood-fatigue of drivers and hence indirectly impact their 
preference of music, while here we only define the direct impact of TC to drivers’ 
music choice. 

Table III. Statistics about the impact of context to music choice in driving situations 
Experimental settings: Statistics software: Stata 13; Logistic regression; Number of obs = 505;  
LR chi2(4) = 9.27; Prob > chi2= 0.0547; Log likelihood = -167.08999; Pseudo R2 = 0.0270                     
Items Coefficient Standard Error [95% Confidence 

Interval] 
Social context (SC) 0.347 0.266 -0.703, 0.314 

Traffic context (TC) 0.254 0.314 -0.672, 0.871 

Human mood-fatigue 
context (HMC) 

0.956 0.312 -1.726, -0.188 

 

During the development of SAfeDJ, we observe that the data about SC (i.e., gender, 
cultural background) and TC (i.e., road condition) are usually string data. While as 
introduced in Section 3.2, the data about HMC have been normalized as decimals. 
Thus, we design two similarity computing methods: 1). Ontology-based similarity 
computing to calculate the similarities of SC - Sim(DA_S, DXS), and TC - Sim(DA_t, DXt), 
respectively; and 2). Euclidean similarity computing to calculate the similarity of 
HMC - Sim(DA_hm, DXhm). 

1) Ontology-based similarity computing 
Normally, the data about SC and TC are string data and they usually have implicit 

contexts. It would be difficult for the traditional keyword based matching (e.g., 
location based in [Baltrunas et al. 2012]) to explicitly compare the similarity between 
two contexts of SC and TC. For example, regarding the SC, directly comparing the 
two words “Canada” and “UK” as two drivers’ cultural backgrounds would return a 
similarity of 0. Similarly, for TC, directly comparing the two places “Hana Road” and 
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“Hamakua Coast”, which are totally different words and locations, would also return 
a similarity of 0, while their views and road conditions are actually similar. Thus, we 
adopt the ontology-based similarity computing to calculate the similarities of SC and 
TC between drivers. In the research community, there already exist several popular 
ontologies, e.g., WordNet [Pedersen et al. 2004] with a large lexical database of 
English, FOAF [Brickley et al. 2012] that descripts the social relations between 
people, and geo.owl [Battle et al. 2012] that defines geographic concepts. Considering 
the high efficiency requirements in the driving situations, we first adopt labeled links 
to establish relationships between a context and its semantics, so as to enable 
multiple collected data of SC and TC to be used to compute the context similarity. 
Then, we design a lightweight and scalable similarity computing method in CMM, 
which can make use of the above and other existing ontologies to calculate the 
similarities between two context items of SC and TC in an effective and efficient 
manner.  

In a conceptual graph (i.e., the common ontology), three aspects impact the semantic 
similarity of two concepts (items): the distance (the length of the path) between two items, 
the depth of two items and the depth of their most specific common parent in the 
common ontology, and whether the direction of the path between the two items is 
changed. The semantic similarity is calculated as: 
𝑆𝑆𝑠𝑠𝑚𝑚(𝐼𝐼1, 𝐼𝐼2) = 2𝐶𝐶(𝑘𝑘+𝑝𝑝+𝑑𝑑)𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖ℎ𝑐𝑐𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑛𝑛_𝑎𝑎𝑛𝑛𝑐𝑐𝑝𝑝𝑠𝑠𝑢𝑢𝑝𝑝𝑝𝑝/(𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖ℎ𝐼𝐼1 + 𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖ℎ𝐼𝐼2)       (20) 
where common_ancestor is the most specific common parent item; depth represents the 
depth of an item in the ontology; k defines the length difference of the two paths between 
the most specific common parent item and the two items; p defines the path length 
between two items; d defines the changes of the directions over the path; and c is a 
constant between 0 and 1. After the similarity of each item about SC and TC has been 
calculated, we can get the ∑ 𝑆𝑆𝑠𝑠𝑚𝑚�𝐷𝐷𝐴𝐴_𝑠𝑠,𝐷𝐷𝑋𝑋𝑠𝑠�

𝑁𝑁1
𝑗𝑗=1  and ∑ 𝑆𝑆𝑠𝑠𝑚𝑚�𝐷𝐷𝐴𝐴_𝑢𝑢 ,𝐷𝐷𝑋𝑋𝑢𝑢�

𝑁𝑁2
𝑗𝑗=1  based on equations 

(15), (16) and (17). 

2) Euclidean similarity computing 
In Section 3.2, the contexts of HMC have been defined in seven dimensions (one 

dimension of fatigue and six dimensions of moods): fatigue-degree, aggressive-degree, 
neutral-degree, happy-degree, sad-degree, angary-degree, patience-degree; and each 
dimension is normalized as decimals between 0 and 1. Thus, we just need to calculate 
the Euclidean distance of each dimension between two drivers’ HMC shown in 
equation (21), and then sum up the results in equation (22) to get the 
∑ 𝑆𝑆𝑠𝑠𝑚𝑚�𝐷𝐷𝐴𝐴_ℎ𝑚𝑚,𝐷𝐷𝑋𝑋ℎ𝑚𝑚�
𝑁𝑁3
𝑗𝑗=1 . 

𝑆𝑆𝑠𝑠𝑚𝑚�𝐷𝐷𝐴𝐴_ℎ𝑚𝑚,𝐷𝐷𝑋𝑋ℎ𝑚𝑚� = 1 −�(𝐷𝐷𝐴𝐴ℎ𝑚𝑚 − 𝐷𝐷𝑋𝑋ℎ𝑚𝑚)2                                 (21) 

∑ 𝑆𝑆𝑠𝑠𝑚𝑚�𝐷𝐷𝐴𝐴_ℎ𝑚𝑚,𝐷𝐷𝑋𝑋ℎ𝑚𝑚�
𝑁𝑁3
𝑗𝑗=1 = ∑ (1 −�(𝐷𝐷𝐴𝐴ℎ𝑚𝑚_𝑗𝑗 − 𝐷𝐷𝑋𝑋ℎ𝑚𝑚𝑗𝑗)27

𝑗𝑗=1 )/7         (22) 

B. Context vector 
   After calculating the similarities between Driver A and all the other drivers, we 
could select the most suitable drivers with specific driving situations recorded in the 
crowd history dataset in SAfeDJ cloud as context representatives for music 
recommendation to Driver A. To avoid the possible random and subjective factors of 
single driver that may impact the choice of music, we need to select more than one 
representative. Also, to make sure the music could be delivered in time in highly 
dynamic driving scenarios, we need to limit the number of representatives. Thus, in 
our design, we select the most similar driving situation of Driver A himself (i.e., 



39:14                                                                                                                            X.Hu et al. 
 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 

recorded a few minutes ago in time t) and marked as DAt plus the records of the other 
ten drivers as representatives. 

Furthermore, to make sure that the summed up contexts of the other ten 
representatives could be most similar to Driver A’s current context, we define a 
context vector: 

𝑠𝑠𝑠𝑠𝑚𝑚(𝐷𝐷𝐴𝐴,𝐷𝐷𝑠𝑠𝑢𝑢𝑚𝑚)������������������������������⃑ = [∑ 𝑆𝑆𝑠𝑠𝑚𝑚�𝐷𝐷𝐴𝐴_𝑠𝑠 ,𝐷𝐷𝑋𝑋𝑠𝑠�
�������������������������������⃑ 𝑊𝑊𝑠𝑠

10
𝑥𝑥=1 ,∑ 𝑆𝑆𝑠𝑠𝑚𝑚�𝐷𝐷𝐴𝐴_𝑢𝑢,𝐷𝐷𝑋𝑋𝑢𝑢�

������������������������������⃑ 𝑊𝑊𝑢𝑢
10
𝑥𝑥=1 ,∑ 𝑆𝑆𝑠𝑠𝑚𝑚�𝐷𝐷𝐴𝐴_ℎ𝑚𝑚,𝐷𝐷𝑋𝑋ℎ𝑚𝑚�

���������������������������������������⃑ 𝑊𝑊ℎ𝑚𝑚
10
𝑥𝑥=1 ]    (23) 

in which the �𝑠𝑠𝑠𝑠𝑚𝑚(𝐷𝐷𝐴𝐴,𝐷𝐷𝑠𝑠𝑢𝑢𝑚𝑚)������������������������������⃑ � means the similarity between Driver A and the summed 
up context of the other ten representatives, and it should be as large as possible. Also, 
|∑ 𝑆𝑆𝑠𝑠𝑚𝑚�𝐷𝐷𝐴𝐴_𝑠𝑠,𝐷𝐷𝑋𝑋𝑠𝑠�

������������������������������⃑10
𝑥𝑥=1 |≤ 1.0, |∑ 𝑆𝑆𝑠𝑠𝑚𝑚�𝐷𝐷𝐴𝐴_𝑢𝑢 ,𝐷𝐷𝑋𝑋𝑢𝑢�

������������������������������⃑10
𝑥𝑥=1 |≤ 1.0, |∑ 𝑆𝑆𝑠𝑠𝑚𝑚�𝐷𝐷𝐴𝐴_ℎ𝑚𝑚,𝐷𝐷𝑋𝑋ℎ𝑚𝑚�

��������������������������������������⃑10
𝑥𝑥=1 |≤ 1.0, 

since the highest similarity is 1.0 as defined in equation (19). The process to choose 
the ten representatives for music recommendation is shown in Algorithm 2, in which 
it computes the similarities of all context items and compares the constitutes of them, 
so as to select the maximum �𝑠𝑠𝑠𝑠𝑚𝑚(𝐷𝐷𝐴𝐴,𝐷𝐷𝑠𝑠𝑢𝑢𝑚𝑚)������������������������������⃑ �. 

ALGORITHM 2. Finding the Ten Most Suitable Context Representatives 
Input: Similarity items of each context representative candidates. 
Output: Ten context representatives  
1. For each x, compute all the similarity terms of driver x with driver A, and sum up all 
similarity items as sim(x) 
2. Sort sim(x) in descending order 
3. Mark sim(0) 
4. From i = 1 on, observe individual terms in sim(x), if the constitution of sim(x) is similar to 
sim(x-1), then throw away sim(x), else, mark sim(x) 
5. Repeat 3 until there are 10 sim(*) are marked   
 

Once the DAt and the other ten context representatives are selected, since each of 
them has the corresponding history satisfaction scores of music - Sx (has six 
dimensions [L,E,S,G,N,P]) along with the driver’s specific driving situations (see 
Table II in Section 3.2), then we can get the overall music recommendation score - 
SAR for Driver A through: 
𝑆𝑆𝐴𝐴𝐴𝐴 = (𝑆𝑆𝐴𝐴𝑢𝑢 ∗ 𝑚𝑚𝑆𝑆𝑠𝑠𝑚𝑚�𝐷𝐷𝐴𝐴,𝐷𝐷𝐴𝐴𝑢𝑢� + ∑ 𝑆𝑆𝑥𝑥 ∗ 𝑆𝑆𝑠𝑠𝑚𝑚(𝐷𝐷𝐴𝐴,𝐷𝐷𝑥𝑥)10

𝑥𝑥=1 )/(𝑚𝑚𝑆𝑆𝑠𝑠𝑚𝑚�𝐷𝐷𝐴𝐴,𝐷𝐷𝐴𝐴𝑢𝑢� + ∑ 𝑆𝑆𝑠𝑠𝑚𝑚(𝐷𝐷𝐴𝐴,𝐷𝐷𝑥𝑥))10
𝑥𝑥=1        (24) 

In equation (24), we can observe that the higher overall similarity Sim(DA,DX) 
between the representative X and Driver A, then the higher weight of Sx in SAR. Also, 
usually the history of Driver A himself has more reference value than others, thus we 
put a constant value m in this equation and set its default value as 2, and we plan to 
let the users of SAfeDJ configure m to suit their needs. In addition, if there is a 
disconnection between the smartphone and the SAfeDJ cloud while driving, the 
context representative will consist of only DAt, then SAR=SAt. 

3.3.2 Music recommendation and satisfaction calculation of songs 
As discussed in Section 3.1, each song belonging to a driver using SAfeDJ could be 
processed and calculated in the six dimensions to get the music-mood - Ssongi 

([L,E,S,G,N,P]). Thus, we just need to compare SAR and each Ssongi in the MMD 
(referring Table I in Section 3.1.2) of Driver A, then the song with the minimum 
|Ssongi - SAR| will be selected and recommended to Driver A. 

Furthermore, as discussed in Section 3.2, we could use the smartphones to detect 
and record the real-time mood-fatigue data of drivers and store such data in the UHT 
(Table II in Section 3.2). As each user of SAfeDJ has a MMD, we could adopt 
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Algorithm 3 for the smartphones to automatically calculate the satisfaction scores of 
each song the driver is listening (to obtain the changing trend of a driver’s moods 
during the time while he is listening to the song), and synchronize such scores to 
SAfeDJ cloud to generate/update the historic satisfaction score of the music - Sx in 
real-time, i.e., data shown in the right side of Table II. 

ALGORITHM 3. Satisfaction Calculation of Songs and Music Scores Update 
Input: start time of the song, end time of the song, Ssongi ([L,E,S,G,N,P]) in the MMD, UHT-
mood-fatigue history data within the time range of the song, and the history satisfaction scores 
of music - Sx [L,E,S,G,N,P] 
Output: a score [-1,1] indicating the level of satisfaction the user towards the song, and 
updated Sx -[L,E,S,G,N,P] 
Positiveness definition: happy +2, neutral +1, patient +1, not aggressive +1, sad -1, angry -2, 
not patient –1, aggressive -1 (with ‘+’ indicates positive and ‘-’ indicates negative) 
1. range = [start of song : end of song]>[0:n-1]; for k in [0:n-1] 
p_k= happy*2 + neutral*1+ patient*1+not aggressive*1+sad*(-1)+angry*(-2)+not patient*(–
1)+aggressive*(-1) (all of point k) 
for k in [0:n-1] 
Compute d = (p_(k+1) –p_k) - (p_k–p_(k-1)) 
If d≥0, satisfaction += 1, else, satisfaction -=1; normalized satisfaction = satisfaction / n 
2. Initialize: threshold T = x (x default value is 0.4) 
If satisfaction≥0 
satisfaction = satisfaction*T 
updated Sx = satisfaction*Ssongi + Sx 
Else updated Sx = satisfaction*Ssongi + Sx 
Limit updated Sx to [-1,1]  

 EXPERIMENTS AND USER STUDIES 
In this section, we evaluate SAfeDJ in terms of four aspects: (i). Accuracy and 
efficiency of MM; (ii). Effectiveness of the mood-fatigue detector in the context 
model; (iii). Impact of the music recommended by SAfeDJ to drivers; and (iv). 
Overhead of SAfeDJ in popular smartphones. 

 Accuracy and Efficiency of MM 
Similar to our online survey method presented in Section 3.1.2, we randomly picked 
10 songs which cover different styles of music and involved 183 volunteers globally to 
listen to and vote on each song with respect to the dominant moods, and then 
calculate the voting for the percentage of each song’s [L,E,S,G,N,P]. Simultaneously, 
we used our MM methods to calculate the [L,E,S,G,N,P] of each song and compared 
the results with the respective results from the online survey. The closer (smaller 
distance) are the results from these two methods, the higher is the accuracy of our 
MM methods in the identification of music-mood in real-world. In addition, each 
song’s music-mood dimension has a maximum distance value 1.0, and the 
corresponding maximum value of the overall distance of each song is 2.45. 

The experimental results are summarized in Table IV. It shows that regarding 
each song’s music-mood dimension, the distance is generally around 0.1 between our 
MM methods and the results from online voting, and the maximum distance is 0.437 
in the N dimension of the song FuzzUniverse. The overall distance is normally 
around 0.247~0.577 for each song, and 0.419 in average for the 10 songs. Therefore, 
the results demonstrate that the music-mood dimensions calculated by our MM 
methods are close to the results from people’s real feeling about these songs in the 
real-world. Furthermore, as discussed in Section 3.1.2, since our MM methods 
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support self-update of the music clustering with music moods, the accuracy will be 
improved when there are more and more users of SAfeDJ in the future. 

Table IV. Case study about the accuracy of MM 
Name of 

Song 
Lively(L) Energetic(E) Sad(S) Groovy(G) Noisy(N) Peaceful(P) Overall 

Distance 
(Max:2.45) 

|MM-Vote| 
=Distance 

|MM-Vote| 
=Distance 

|MM-Vote| 
=Distance 

|MM-Vote| 
=Distance 

|MM-Vote| 
=Distance 

|MM-Vote| 
=Distance 

1984 |0.348-0.439| 
=0.091 

|0-0.041| 
=0.041 

|0.391-0.306| 
=0.085 

|0.044-0.055| 
=0.011 

|0-0| 
=0 

|0.522-0.918| 
=0.396 

0.418 

Haoting |0.696-0.776| 
=0.080 

|0.522-0.306| 
=0.216 

|0.130-0.041| 
=0.089 

|0.522-0.384| 
=0.138 

|0.087-0| 
=0.087 

|0.130-0.459| 
=0.329 

0.443 

Manhattan |0.696-0.449| 
=0.247 

|0.522-0.225| 
=0.297 

|0.130-0.031| 
=0.099 

|0.522-0.500| 
=0.022 

|0.087-0.020| 
=0.067 

|0.130-0.541| 
=0.411 

0.577 

WannaBe |0.261-0.459| 
=0.198 

|0.870-0.776| 
=0.094 

|0.435-0.286| 
=0.149 

|0.435-0.455| 
=0.020 

|0.044-0.286| 
=0.242 

|0.044-0.225| 
=0.181 

0.403 

Nizaiganma |0.609-0.532| 
=0.077 

|0.043-0.165| 
=0.122 

|0.304-0.190| 
=0.114 

|0.478-0.354| 
=0.124 

|0-0.101| 
=0.101 

|0.261-0.139| 
=0.122 

0.273 

Huahuo |0.609-0.190| 
=0.419 

|0.043-0.139| 
=0.096 

|0.304-0.494| 
=0.190 

|0.478-0.203| 
=0.275 

|0-0.013| 
=0.013 

|0.261-0.418| 
=0.157 

0.567 

AndIloveher |0.348-0.076| 
=0.272 

|0-0.051| 
=0.051 

|0.391-0.544| 
=0.153 

|0.043-0.089| 
=0.046 

|0-0.013| 
=0.013 

|0.522-0.671| 
=0.149 

0.353 

FuzzUniverse |0.217-0.430| 
=0.213 

|0.435-0.722| 
=0.287 

|0-0.013| 
=0.013 

|0.304-0.228| 
=0.076 

|0.215-0.652| 
=0.437 

|0-0| 
=0 

0.570 

Neverwakeup |0.217-0.190| 
=0.027 

|0.435-0.316| 
=0.119 

|0-0.063| 
=0.063 

|0.304-0.076| 
=0.228 

|0.652-0.747| 
=0.095 

|0-0| 
=0 

0.247 

Waltzfordebby |0-0.089| 
=0.089 

|0-0.013| 
=0.013 

|0.696-0.392| 
=0.304 

|0.043-0.101| 
=0.058 

|0-0.038| 
=0.038 

|0.783-0.671| 
=0.112 

0.343 
 

Moreover, we conducted experiments about the time efficiency of MM to analyze 
music in smartphones. We used 180 songs in mp3 format in our tests, with each song 
having two bit rates (128kbps and 320kbps). Based on the type of song’s bit rate, we 
divided the tests into two cases, and recorded the average time for music analysis 
(overall time divides 180) in each case. Also, there are three situations in each case: (i) 
Operating MM in SAfeDJ cloud to analyze the music under LTE network under 
normal driving situations (e.g., around 40~60km/h driving speed in urban areas); (ii) 
Operating MM in SAfeDJ cloud to analyze the music under stable WiFi network in 
non-driving situations; and (iii) Only operating MM in smartphones to analyze the 
music. The experimental environment of SAfeDJ cloud was as follows: Hardware - 
Amazon EC2 M3 2xlarge Instance; 30 GB memory; 8v EC2 Compute Unit; 2*80 GB 
SSD storage; Moderate I/O Performance; EBS-Optimized Available: No. Software - 
operating system: Windows Server 2008. Experimental device - Samsung Galaxy 
S4. Vehicle - 2005 Toyota Sienna. 

 
Fig. 6. Time efficiency of MM 

The results about the time efficiency of MM are shown in Fig. 6. We find that the 
average processing time in SAfeDJ cloud is about 26.9s on each mp3 song with bit 
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rate of 128kbps and about 4MB file size, while 33.61s when the mp3 song has a bit 
rate of 320kbps and about 10MB file size. Since the communication time is mainly 
made up of the time for uploading the mp3 file from Galaxy S4 to SAfeDJ cloud for 
processing, this time mostly depends on the size of the mp3 file and network 
condition (WiFi or LTE). Also, we observe that the uploading speed of the mp3 file 
may decrease occasionally due to adverse channel conditions and latency of 
handovers encountered during our driving tests. In most cases, however, the 
uploading speed of SAfeDJ over an LTE network is very stable in normal driving 
situations, and the maximum delay is 39.06s in our experiments. This is because 
LTE is the most recent generation of cellular networking technology with a high 
performance and support for terminal mobility at a speed up to 350km/h [G. Araniti 
et al. 2013]. In addition, a lot of research works have addressed vertical handovers in 
heterogeneous wireless networks that support seamless connectivity for smartphones 
and other terminals in vehicular networks [S. Fernandes et al. 2012], and different 
mechanisms can be integrated in SAfeDJ to better support vertical handovers in the 
future. On the other hand, Fig. 6 shows that the average processing time of MM in 
Galaxy S4 are 104.64s and 138.43s, respectively, for the two bit rates. Since a song 
normally plays for more than 3 minutes, thus the probability that MM can process a 
new mp3 song in time while a driver is driving and using SAfeDJ should be high. 

 Effectiveness of Mood-fatigue Detector in Context Model 
To evaluate the effectiveness of the mood-fatigue detector presented in Section 3.2, 
we involved ten volunteers (five males and five females) on campus to conduct a set 
of tests. At the same location under normal light, each subject was seated in front of 
a smartphone (Google Nexus 5) running SAfeDJ with a five-degree angle to simulate 
the normal driving position. Then the subject was requested to do five tests, each 
lasting for 300s, to evaluate the effectiveness of detections for: fatigue and four 
moods - neutral, sad, happy, and angry, respectively. 

To test the accuracy of fatigue detection, each subject was asked to pretend that 
he/she was tired, and express his or her common reactions under such status, like 
closed or squint eyes frequently. Similarly, in the tests for detections of the four 
moods, each subject was asked to express the four types of moods in terms of how 
they may appear as their daily facial expressions. As mentioned in Section 3.2, each 
item of the mood-fatigue could be quantified as a degree which value ranges from 0 to 
1.0. For example, in every ten-second period, if the fatigue status of a subject is 
detected 7 times and the non-fatigue status is detected 7 times, then fatigue degree of 
him/her has a value of 7/(7+7)=0.5 in this period. This means that the higher value of 
the fatigue degree detected in our test, the higher is the effectiveness of our mood-
fatigue detector. Also, as the results may be impacted by the sequences of the five 
tests, e.g., people’s faces may get tired or stiffed after expressing a certain mood for a 
long time, we assigned a random sequence of these tests to each subject to avoid such 
impacts. Finally, after all the data about the ten people are recorded in each test, the 
average values of them were calculated. 

The experimental results of the five tests are shown in Fig. 7. We can observe that 
the average detected value of the fatigue degree is around 0.8, which means most of 
the fatigue expressions (i.e., tired eyes) from the people could be detected by our 
mood-fatigue detector. Regarding the detections of the four moods, the average value 
of the neutral mood is around 0.9 indicating a high effectiveness of detection, since 
this is the most common mood status of people. However, for the detections of happy 
and sad moods, the detected average values of them are both around 0.6, as the facial 
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expressions of such moods are similar to neutral expression for some people. As the 
most diversified expression, the detected average value of angry is around 0.5 in the 
corresponding test. Moreover, we make a simple comparison of our mood-fatigue 
detector with a similar approach found in the literature [Suk 2014]. Under similar 
situations, the effectiveness of their approach using smartphones to detect the moods 
of drivers is around 0.9 for neutral and happy, 0.3 for sad, and 0.4 for angry, 
respectively. Even though our approach and theirs are running on different Android 
devices, a key reason for the better detection of negative moods in our approach is 
that we lower the threshold in the determination of drivers’ negative moods in our 
algorithm. 

 
Fig. 7. Experimental results about the detections of mood-fatigue degree 

Furthermore, it is worth noting that as presented in Section 3.2, beyond using the 
front camera of the smartphone to detect the mood-fatigue of drivers like the above 
tests, our solution also supports using the data from OBD and heart rate sensors 
simultaneously to facilitate detection of the mood-fatigue of drivers while driving. For 
instance, the OBD could be used to detect hard accelerations of drivers and infer the 
aggressiveness and mood-fatigue degrees of them. Also, as demonstrated in the 
related work [Lee 2012], the effectiveness of prediction of drivers’ mood-fatigue 
degree can even increase to 94% when multiple wearable sensors are used 
simultaneously with smartphones. Due to the experimental constraints of these tests, 
e.g., it would be unsafe to require the volunteers to do multiple hard accelerations 
while driving, we have not evaluated these approaches in practice, but only used 
front cameras of smartphones for mood-fatigue detections in our tests. It means that 
in the real-world scenarios during driving, our solution for the mood-fatigue detection 
could have a higher effectiveness when data from the OBD and heart rate sensors are 
also incorporated in the detection process. 

 Impact of Music Recommended by SAfeDJ to Drivers 
Since it would be difficult to involve multiple drivers to use SAfeDJ and drive in the 
same road and traffic conditions in experimental tests, thus similar to former 
research in driving behavior analysis [Cassidy et al. 2009; Zwaag et al. 2012], we 
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adopted a driving simulator as shown in Fig. 8(a) to evaluate the impact of music 
recommended by SAfeDJ to drivers. In our user studies, we involved 48 volunteers 
(32 males and 16 females) with driver licenses. Currently, people usually listen to 
music via smartphones in two ways: (a) Collecting and storing the preferable songs in 
personal smartphones, and playing such songs on the smartphones directly; or (b) 
Playing all the songs on the smartphones by accessing popular online music 
streaming services. Thus, we randomly divided the 48 volunteers into two groups, 
group a and group b, each consisting of 24 people. Each driver in group a picked 40 
songs that were most preferable to him/her and used them in all his/her tests. 
Drivers in group b all accessed the same music library consisting of 180 mp3 songs 
with different styles in all the tests. In both groups, each driver was required to 
finish three kinds of tests in the same road and traffic conditions: (i) Not listening 
music; (ii) Listening to music via the smartphone’s (Huawei P7) default music player; 
(iii) Listening to music recommended by SAfeDJ. Each test lasted for 20 minutes, 
and the time interval between two tests was about 30 minutes for every driver, so as 
to ensure that the drivers could drive in the same fatigue and mood status as far as 
possible in each test. Also, in case the degree of familiarity to the roads may impact a 
driver’s mood-fatigue status, the sequence of the three tests for each driver was 
randomized. 

 
Fig. 8. Experimental driving scenarios 

As shown in Fig. 8(b), when a driver started using SAfeDJ, he could use SAfeDJ to 
log into his Facebook account, which enables SAfeDJ to get his SC like gender, age 
and cultural background for the initial prediction of his music preference. During the 
tests, we used the mood-fatigue detector of SAfeDJ to record the mood-fatigue history 
of every driver every 30 seconds, and configured the detector to synchronize the 
results with the SAfeDJ cloud automatically. After all the tests were finished, we 
calculated and compared the average fatigue degree and negative mood degree (sad 
plus angry degrees) of each group’s 24 drivers in the three different kinds of tests. 

The comparison results about drivers’ fatigue degrees in group a and group b are 
summarized in Fig. 9(a) and Fig. 9(b), respectively. We observe that in both groups, 
the drivers’ fatigue degree is slowly increasing in their driving when they do not 
listen to music or listen to music via the smartphone’s default music player. Also, it is 
interesting that in group b, the drivers’ recorded fatigue degree is even higher in 
most of the time periods when they listen to music through the default music player 
(average value is 0.4435), comparing to not listen to music while driving (average 
value is 0.3606). The average value of fatigue degree is 0.3166 when using default 
music player and 0.3607 when non-listening music in group a. In contrast, the 
drivers’ fatigue degree is the lowest when they listen to music recommended by 

(b) Social network account log in

(a) Driving simulator
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SAfeDJ during driving, and the related average value is only 0.1898 in group a and 
0.1972 in group b, which means it is 49.09% lower than using default music player in 
overall. 

 
Fig. 9. Comparisons of drivers’ fatigue degree 

On the other hand, from Fig. 10, we find that the drivers’ recorded negative mood 
degree is relatively complicated. In group a, the drivers’ negative mood degree is 
close between using default music player and SAfeDJ. On the other hand, in group b, 
the drivers’ negative mood degree may become the highest when they listen to music 
via the default music player in some time periods, but lower than that from listening 
to music recommended by SAfeDJ in a few time periods. Nevertheless, in general the 
recorded negative mood degree of drivers is still the lowest when they listen to music 
provided by SAfeDJ with an average value 0.0712 in group a and 0.0752 in group b. 
In contrast, the average value is 0.0961 in group a and 0.1339 in group b when using 
the default music player. Thus, it means that SAfeDJ decreases drivers’ negative 
mood degree by 36.35% compared with the smartphone’s default music player in 
overall. In addition, the average value is 0.2183 in group a and 0.2104 in group b 
when the drivers are not listening to music while driving. 

 
Fig. 10. Comparisons of drivers’ negative mood degree 

 Overhead 
We evaluated the basic overhead of SAfeDJ running in popular smartphones in three 
aspects: (i) CPU usage; (ii) RAM usage; (iii) Basic data consumption; and (iv) Battery 
consumption. We used a Google Nexus 5 to do the four tests in a 2005 Toyota Sienna 
vehicle. Also, each test lasted for 60 minutes and was repeated ten times, and then 
the average was calculated. The results of the four tests are summarized in Fig. 11.   

(b). group b(a). group a

(b). group b(a). group a
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The CPU usage is around 19% and RAM usage is approximate 175MB when 
running SAfeDJ in Nexus 5 without uploading MM for local music analysis. The CPU 
and RAM usages increase to around 45% (56% in peak period) and 240MB (320MB in 
peak period), respectively, when running SAfeDJ and uploading MM for local music 
analysis. Considering that the hardware capacity of smartphones is increasing and 
drivers can hardly operate other mobile applications while they are driving, thus the 
overhead of SAfeDJ should be acceptable for many popular smartphones. 

 
Fig. 11. Overhead of SAfeDJ in smartphones 

Without uploading MM for music analysis, the data consumption of SAfeDJ is 
mostly spent in the transmission of music files; hence we only test the basic data 
consumption of SAfeDJ when finishing local music analysis in two situations. In the 
first situation, we recorded the data consumption over a stable WiFi network in non-
driving scenarios. In the second situation, we recorded the data consumption when 
using LTE network and driving the 2005 Toyota Sienna in downtown Vancouver at 
normal speed. Fig. 11(c) shows that the basic data consumption of SAfeDJ is very low 
in both situations, only 9.59KB at the beginning for initial account synchronization 
(i.e., SC of a driver) between SAfeDJ cloud and Nexus 5. Then, the data consumption 
increases to around 31KB after running SAfeDJ in a Nexus 5 for 60 minutes, which 
is mainly spent in the synchronization of HMC, TC (i.e., location) and satisfaction 
score of music, and receiving the music recommendation results from the SAfeDJ 
cloud. Also, we can observe that the results in these two situations are quite close, 
mainly because SAfeDJ only synchronizes the context with and receives the 
recommendation results from the SAfeDJ cloud 5s before the end of each song as 
mentioned in Section 3.2. Thus, the likelihood of additional data consumption 
resulted by communication signaling is quite low in most common driving situations.  

In addition, the battery consumption in the Nexus 5 due to running SAfeDJ is 
about 16% per hour without uploading MM or 34% when uploading MM. Since the 

(a). CPU Usage (b). RAM Usage

(c). Basic Data Consumption (d). Battery Consumption
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smartphones could usually be charged onboard vehicles, the battery consumption 
should not be a serious concern for running SAfeDJ onboard vehicles. Furthermore, 
we observe that the CMM in SAfeDJ cloud can finish the similarity computing for 
music recommendation and return the results to the Nexus 5 within 3s in all our test 
cases, which is fast enough for music delivery in most driving scenarios. 

 CONCLUSIONS 
In this paper, we have presented SAfeDJ, a novel smartphone-based situation-aware 
music recommendation system for drivers. SAfeDJ leverages sensing and computing 
capacities of smartphones to orchestrate multiple sources of sensing data with 
drivers’ social contexts, and adopts cloud platform to form a seamless interactive 
system. This system enables different smartphones onboard vehicles to 
collaboratively recommend preferable music to drivers according to their specific 
driving situations intelligently in real-time. Our practical experiments have 
demonstrated that SAfeDJ enables the smartphones to process and identify the 
music-mood of each song efficiently and effectively, and detect the real-time mood-
fatigue status of drivers in an effective manner. Furthermore, under the same 
driving situations, our user studies have verified that SAfeDJ can deliver suitable 
music to drivers and help them to relieve fatigue and negative emotions compared to 
not listening to music, or listening to music recommended by the traditional music 
player. To the best of our knowledge, SAfeDJ is the first smartphone-based 
interactive music recommendation system that recommends music to drivers not only 
based on their listening behaviors, but also their current states and driving 
situations. 
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A. FOR SECTION 3.1.2 
The diagrams about the music mood labeling presented in Section 3.1.2 are shown in 
Fig. A. 

B. FOR SECTION 3.2 

The working flow of the mood-fatigue detector presented in Section 3.2 is shown in 
Fig. B-1. Firstly, to determine the aggressiveness and patience of a driver, an OBD-II 
scanner is used to obtain driving data from the car, e.g., the RPM, Tht, and Sp; and 
these data are complimented by the data of Hr from a heart rate sensor. For example, 
driving at a high speed and braking hard may indicate aggressive driving behavior. 
Also, we can infer that a driver is likely aggressive in driving if the average RPM of 
vehicle is more than 4000 and the throttle input degree of the pedal is 100 percent. 
Similarly, the history of heart rate and driving behavior could be used to infer the 
driver’s calmness or degree of being annoyed. 

 
 

 
Fig. A. Diagrams of the music mood labeling 
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Fig. B-1. Working flow of the mood-fatigue detector 

 
While to detect the remaining four dimensions (neutral, happiness, sadness, anger) 

of a driver’s mood in a precise manner, we adopt facial expression to detect the 
driver’s emotion in real-time, which is achieved by utilizing the front camera of a 
smartphone. Then as shown in Fig. B-2, we apply the cascade classifier to locate the 
face of the driver in the pictures and then use the face recognizer in the OpenCV-
2.4.9 library [OpenCV 2014] to identify the mood of the driver. The recognizer is 
trained by the eigenface algorithm [Zhang et al. 2005] to increase the accuracy on 
mood detection. 
 

 
Fig. B-2. Facial expressions and eye-lid detector 

 
On the other hand, we also invoke the front camera of smartphones and integrate 

the EI detection function to analyze the fatigue degrees of drivers. We use the EI 
distance of the driver’s eyes to analyze the degree of drowsiness. First, we locate the 
eyes in the picture and measure the distance between the upper and lower eye-lids. 
We observe the driver’s average eye-lid distance under neutral conditions, and use it 
as a reference to calculate the relative percentage on how wide the driver opens his 
eyes. From our initial testing, the drivers are often tired if the relative percentage is 
less than 50 percent. In addition, the data about in-vehicle temperature (T) and road 
congestion situation could also be used as complements to infer the fatigue degrees of 
drivers in a more precise manner. 

C. FOR SECTION 3.3.1-A-1) 
The method to find the most specific parent presented in Section 3.3.1-A-1) is shown in 
Algorithm A. The algorithm mainly contains two loops: Lines 1~3 set the quit standards 
for the first loop and retrieve a list stores the path information for an item. Line 4~14 
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include an embedded loop which traverses the path information for the second item, 
check the common item and return related information.  

ALGORITHM A.  Pseudo Code of Finding the Most Specific Parent 
public long FindLCA(HierarchicalWordData[] words, out distance, out lcaDepth, out depth1, 
out depth2) 
{ long LCA = -1; lcaDepth = -1; depth1 = -1; depth2 = -1; distance = MaxValue; i=-1; 
1. while (++i < 1 && LCA == -1){ 
2.     IDictionaryEnumerator trackEnum = words[1 - i].Distance.GetEnumerator(); 
3.     if (trackEnum == null) return -1; 
4.     while (trackEnum.MoveNext()){ 
5.      commonAncestor = trackEnum.Key; 
6.      if (words[i].Distance.ContainsKey(commonAncestor)) 
7.       {dis_1 = words[i].GetDistance (commonAncestor);  
8.     dis_2 = words[1 - i].GetDistance(commonAncestor); 
9.       len = dis_1 + dis_2 - 1; 
10.      if (distance > len) 
11.       { lcaDepth_1 = words[i].GetDepth(commonAncestor); 
12.       lcaDepth_2 = words[1 - i].GetDepth(commonAncestor); 
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